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ABSTRACT 

 
With some of the noninvasive electrophysiological 

measurement applications benefiting from simultaneous 

collection of data via both conventional disc electrodes and 

concentric ring electrodes, an emulation of the former by the 

outer ring of the latter was previously proposed and has since 

been used widely. Its effectiveness was validated using linear 

time and frequency domain signal synchrony measures 

(cross-correlation and coherence respectively) on both 

phantom model data and resting electroencephalogram from 

six healthy human subjects. However, application of a 

nonlinear signal synchrony measure (normalized mutual 

information) in this study resulted in mean values of less than 

0.7 on both phantom model and human electroencephalogram 

datasets indicating that the outer ring of a tripolar concentric 

ring electrode may not be as suitable as an emulation of the 

disc electrode as previously suggested. Therefore, alternative 

options like the central disc or the middle ring will need to be 

assessed in the future work. 

 

Index Terms— Electroencephalogram, synchrony, 

normalized mutual information, emulation, tripolar, 
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1. INTRODUCTION 

 

Concentric ring electrodes (CREs) are noninvasive wearable 

sensors that allow the measurement of electrophysiological 

signals from organs like brain or heart to advance research 

involving brain-computer interface [1], [2], [3] and high 

frequency activity using source localization [4] in epilepsy 

patient data or moment of activation isochronal mapping [5] 

and sleep [6] in healthy human subject data. The CREs have 

the ability to estimate the surface Laplacian at each individual 

electrode by combining differential voltages between the 

central disc and the rings into a weighted linear combination. 

Finally, t-Lead electrodes (CREmedical, Kingston, RI) are 

commercial tripolar CREs (TCREs, Fig. 1, A) that have been 

used in numerous studies that include both older animal 

model based experiments like [7], [8] and recent human data 

based ones like [3], [9].  

Some of CRE applications may still benefit from 

recording simultaneously from both CREs and conventional 

disc electrodes (Fig. 1, B). For example, in [10], simultaneous 

recordings of electroencephalogram (EEG) via disc 

electrodes and Laplacian estimate signals via TCREs with 

dimensions identical to the ones of t-Lead, from human 

patients with epilepsy was performed. This approach allowed 

a direct comparison between two sensor modalities for 

seizure onset detection. In [10] TCREs were placed directly 

behind disc electrodes in the standard 10-20 system locations. 

Disadvantages of this approach are two-fold. First, two sets 

of signals were not recorded at the exact same locations. 

Second, additional hardware was necessary for this approach, 

as simultaneous recordings via two electrode modalities 

required two different recording systems working at the same 

time which may result in issues with time synchronization of 

the resulting sets of signals. 

Because of this, in the past, emulation of the disc 

electrode was proposed and assessed on both phantom model 

and human EEG data via either the outer ring of a TCRE or a 

TCRE with shorted recording surfaces. First, two emulation 

options were tested against the disc electrode on phantom 

model data using time domain signal synchrony measure 

(cross-correlation) [11]. Zero lag cross-correlation for the 

outer ring was equal to 0.9744 ± 0.0121 (mean ± standard 

deviation) which was statistically significantly (p = 0.009) 

higher than 0.9445 ± 0.0281 obtained for shorted recording 

surfaces. Therefore, only the outer ring (later termed eEEG 

for emulation of EEG via disc electrode) has been used in all 

future experiments. In those experiments on human EEG 

data, cross-correlation of 0.9905 ± 0.0065 was obtained  [11]. 

Moreover, frequency domain signal synchrony measure 

(coherence) has also been applied resulting in 0.9818 ± 

0.0133 [12]. Similar results were later obtained on a different 

human EEG dataset with all mean correlation and coherence 

values above 0.99 [13]. Since then multiple studies relied on 

the outer ring of a TCRE like t-Lead for emulation of EEG 

via disc electrode including [3], [14], [15], [16], [17], [18]. 

For example, t-Interface preamplifiers (2-Channel or 20-



Channel, CREmedical, Kingston, RI) offer two output signals 

for each t-Lead input channel: Laplacian estimate and eEEG.  

Even though results in [11], [12], [13] suggested 

outer ring/eEEG to be effective as emulation of the disc 

electrode, their main limitation was that only linear signal 

synchrony measures (correlation and coherence) were used. 

This study addresses said limitation by adding a nonlinear 

signal synchrony measure (normalized mutual information, 

NMI) on both phantom model and human EEG data adopted 

from [11], [12]. For phantom model data, two comparison 

pairs of signals were assessed including outer ring versus disc 

electrode and TCRE with shorted recording surfaces versus 

disc electrode. For human EEG data, only the outer ring 

versus the disc electrode pair was assessed since shorted 

TCRE was not included into the respective data collection. 

Obtained results (mean NMI values of less than 0.7 for both 

datasets) indicate that the outer ring of a TCRE may not be as 

suitable as an emulation of the disc electrode as previously 

suggested in [11], [12], [13].   

 

2. METHODS 

 

 

Fig. 1. Tripolar concentric ring electrode with dimensions 

identical to t-Lead from CREmedical (A) and conventional 

disc electrode (B).  

 
2.1. Phantom Model Data 

 
The phantom model dataset was adopted from [11]. Three 

electrodes were included in data collection: the disc electrode 

and two modified TCREs with dimensions identical to t-Lead 

electrode from CREmedical, one connected as the outer ring 

only and the other one as the shorted disc i.e. its three 

recording surfaces were shorted together. All three electrodes 

were placed on a copper plate covered by a 3mm layer of 

Ten20 EEG conductive paste (Weaver and Company, 

Aurora, CO). The copper plate comprised of a single-sided 

copper cladded printed circuit board that was used as a 

cathode. A smaller round copper plate, used as an anode, was 

located and oriented centrally in such a way that three 

electrodes could be positioned across two perpendicular 

diameters of the anode circle at a constant distance of 2mm. 

Both the cathode and anode were connected to a signal 

generator producing a sinusoid with amplitude of 2.5V and 

frequency of 30Hz. The three electrode signals were digitized 

with sampling frequency of 1000Hz at 16-bit using a USB-

2527 data acquisition card (Measurement Computing, 

Norton, MA). The duration of all the recordings was kept at 

30s. A series of six recordings corresponded to six 

combinations of possible locations of the three electrodes at 

three different positions around the circular anode. A total of 

ten series was recorded to improve statistical validity of 

obtained results. All possible positioning combinations at 

each series of recordings were used to balance out potential 

variability due to electrode location. The order of series of 

recordings was randomized in each series to minimize the 

potential effect of the temporal factor. Any corrosive buildup 

from the cathode and anode copper plates was cleaned after 

each series of recordings. 

  

2.2 Human EEG Data 

 
The EEG dataset was adopted from [11], [12]. To reduce 

movement related artifacts the subjects were instructed to 

remain seated and motionless to record the resting EEG of six 

healthy human subjects (ages 24-40, one female). Skin-to-

electrode impedances were kept below 5kΩ. The TCRE 

(dimensions identical to t-Lead electrode from CREmedical) 

signals were preamplified using a custom preamplifier with a 

gain of 6 and both signals were band pass filtered (0.1-

100Hz) and recorded at 1200 samples per second using a 

gUSB amplifier with a normalized unit gain (g.tec medical 

engineering GmbH, Schiedlberg, Austria). The resulting data 

was segmented into non overlapping 10s yielding 173 

segments total and a total duration of 1730s. Some of the 

monopolar/recording surface (e.g. from the outer ring) and 

differential (middle ring minus central disc and outer ring 

minus central disc) signals from both the TCREs and 

conventional disc electrodes were simultaneously recorded 

using the standard 10-20 system at location P4 with the right 

mastoid process being the reference and ground. Following 

the clinical standard for EEG recordings the frequency range 

selected for signal processing using Matlab (Mathworks, 

Natick, MA) digital filtering (zero-phase fifth-order 

Butterworth) was band of 1-100Hz with 60Hz notch active to 

reduce noise.  

 
2.3 Normalized Mutual Information 

 
Common information between signals was assessed via NMI. 

NMI in probability and information theory expresses the 

mutual dependence between two random variables and has 

been used in several EEG applications [19], [20], [21], [22]. 

Based on Shannon entropy mutual information is computed 

as in (1): 
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where 
� and 
 are the probability distributions of two 

signals and 
�, is their joint probability distribution. 
� , 
 , 
and 
�, were obtained by computing the histograms of two 

signals and their joint histogram, respectively, for b bins and 

dividing them by the number of signal samples (N). Value of 

b was determined by the Rice’s rule: 
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To set the range of ����; �� values to that from 0 to 1, NMI 

was used with four different normalization approaches 

(minimum, maximum, arithmetic, and geometric) [23] and it 

was calculated for all 173 10s signal segments via Matlab 

implementation that has been adopted from [24]. The 

minimum method to normalize the mutual information is to 

divide it by the minimum of individual signal entropies [23]. 

To measure the maximum NMI mutual information is divided 

by the maximum of individual signal entropies [23]. 

Measuring the arithmetic NMI between two signals involves 

dividing mutual information by the arithmetic mean of the 

two individual signal entropies [23]. To measure the 

geometric NMI mutual information was divided by the square 

root of the product of the individual signal entropies [23]. 

 

3. RESULTS 

 

3.1. Phantom Model Data 

 
The obtained values for NMI measure comparing signals 

between the outer ring of a TCRE versus disc electrode and 

between the TCRE with shorted recording surfaces versus 

disc electrode using different normalization approaches 

(geometric, arithmetic, maximum, and minimum) on 

phantom model data are presented in Table 1. Statistical 

analysis was performed by first applying the Shapiro-Wilk 

normality test to all the NMI values (sample size n = 60) 

obtained for each emulation option. Since only the NMI 

values corresponding to the TCRE with shorted recording 

surfaces were normally distributed (p = 0.0583) while the 

ones corresponding to the outer ring of a TCRE were not (p < 

0.001) the nonparametric Mann–Whitney U test was applied 

with the alternative hypothesis of two sample means being 

not equal (p = 0.00024) confirming statistical significance of 

the difference between two emulation options. 

 

Table 1. Signal comparisons using NMI with four different 

normalization approaches on phantom model data. 
Signals 

being 

compared 

Normalized mutual information 

(mean ± standard deviation) 

geometric arithmetic maximum minimum 

Outer ring 

versus disc 

electrode 

0.679 ± 

0.0348 

0.679 ± 

0.0348 

0.675 ± 

0.0355 

0.683 ± 

0.0341 

Shorted 

TCRE 

versus disc 

electrode 

0.634 ± 

0.0268 

0.634 ± 

0.0268 

0.629 ± 

0.0279 

0.64 ± 

0.0257 

 

3.2 Human EEG Data 

 

The obtained values for NMI measure comparing signals 

between the outer ring of a TCRE versus the disc electrode 

using different normalization approaches (geometric, 

arithmetic, maximum, and minimum) on human EEG data are 

presented in Table 2.  

 

Table 2. Signal comparisons using NMI with four different 

normalization approaches on human EEG data. 
Signals 

being 

compared 

Normalized mutual information 

(mean ± standard deviation) 

geometric arithmetic maximum minimum 

Outer ring 

versus disc 

electrode 

0.652 ± 

0.0742 

0.652 ± 

0.0743 

0.649 ± 

0.0752 

0.654 ± 

0.0733 

 

4. DISCUSSION 

 

This study assessed a nonlinear signal synchrony measure 

(NMI) in the important task of emulating the conventional 

disc electrode with a TCRE for the first time. Obtained results 

for comparison between the outer ring of a TCRE and 

conventional disc electrode are reasonably consistent 

between the phantom model (Table 1) and human EEG 

(Table 2) data. They also demonstrate consistency between 

the four assessed normalization approaches for all signal 

comparisons and both datasets. Moreover, NMI results on 

phantom model data suggested that the outer ring of a TCRE 

is a better emulation of a disc electrode than the TCRE with 

shorted recording surfaces is due to statistically significant 

difference in the respective NMI values (p = 0.00024) which 

is consistent with previous results based on linear time 

domain signal synchrony measure (cross-correlation) on the 

same dataset [11]. However, mean NMI values of less than 

0.7 obtained on both datasets indicate that the outer ring of a 

TCRE may not be as effective as an emulation of a disc 

electrode as previously suggested in [11], [12], [13]. 

Therefore, the main direction of future work based on this 

study is to assess alternative options like the central disc or 

the middle ring of a TCRE using NMI to compare their 

performance as disc electrode emulations to that of the outer 

ring. 
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