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ABSTRACT 

 
Recent research showed that optimal coefficients (6, -1) 

maximizing the accuracy of Laplacian estimation via tripolar 

concentric ring electrode with dimensions similar to those of 

t-Lead are different from currently used coefficients (16, -1). 

To assess the impact of this difference, linear time and 

frequency domain (cross-correlation and coherence 

respectively) synchrony measures applied to resting 

electroencephalogram from six healthy subjects revealed 

high signal synchrony in tripolar Laplacian estimates 

indicating that the difference between optimal and 

suboptimal coefficients may not be significant. Aims of this 

study were to add finite element method (FEM) modeling and 

a nonlinear signal synchrony measure (normalized mutual 

information, NMI) to further assess the difference between 

the optimal and suboptimal coefficients. Together the mean 

NMI value of approximately 0.7 and FEM modeling results 

with mean normalized maximum error ratio of 3.57 and mean 

normalized spatial selectivity ratio of 1.54 suggest that the 

difference between using the optimal and suboptimal 

coefficients for Laplacian estimation is significant.  

 

Index Terms— Electroencephalogram, finite element 

method, modeling, synchrony, normalized mutual 

information, Laplacian, estimation, tripolar, concentric ring 

electrode, t-Lead  

 

1. INTRODUCTION 

 

Concentric ring electrodes (CREs) are noninvasive wearable 

sensors that allow the measurement of electrophysiological 

signals from organs like brain or heart to advance research 

involving brain-computer interface [1], [2], [3] and high-

frequency activity using source localization [4] in epilepsy 

patient data or moment of activation isochronal mapping [5] 

and sleep [6] in healthy human subject data. In the past, 

realistic finite dimensions model (FDM) of the CRE was used 

to optimize the coefficients for estimating the surface 

Laplacian via CRE maximizing the estimation accuracy [7]. 

Such FDMs have also been used to approximate the 

dimensions of commercial CREs [8], [9] including t-Lead, a  

commercial (CREmedical, Kingston, RI)  tripolar CRE 

(TCRE) [9]. The noninvasive t-Lead TCREs (Fig. 1) have 

been used in various studies that include both older animal 

model based experiments like [10], [11] and recent human 

data based ones like [3], [12]. The CREs have the ability to 

estimate the surface Laplacian at each individual electrode by 

combining differential voltages between the central disc and 

the rings into a weighted linear combination. Previous 

research showed that maximizing the accuracy of the 

Laplacian estimation can be achieved by optimizing the CRE 

configurations using the FDMs and the results were validated 

through finite element method (FEM) modeling [13]. In 

contrast to FDMs approximating t-Lead dimensions the 

optimal configuration corresponded to Laplacian estimation 

errors that were over four times smaller [9]. The same study 

showed that optimal coefficients (6,-1) for maximizing 

Laplacian estimation accuracy in electrodes with dimensions 

similar to those of t-Lead differ significantly from the 

currently used suboptimal coefficients (16,-1) [9]. Most 

recently, linear time and frequency domain signal synchrony 

measures (maximum and zero lag cross-correlation and 

average coherence over full spectrum as well as over 

individual frequency bands respectively) were applied to 

human electroencephalogram (EEG) data to access the 

difference due to suboptimal (current) and optimal 

coefficients [14] using the human dataset adopted from [15], 

[16]. 

 

 

Fig. 1. Tripolar concentric ring electrode with dimensions 

identical to t-Lead electrode from CREmedical and the 

monopolar/recording surface markers: central disc, middle 

ring, and outer ring. 



 

 

 

The purpose of this study is two-fold. First, it 

assesses via FEM modeling the difference in the estimation 

accuracy of Laplacian potential as well as in spatial 

selectivity corresponding to using optimal and suboptimal 

coefficients. Second, it assesses a nonlinear synchrony 

measure using the normalized mutual information (NMI) 

between EEG Laplacian estimates corresponding to optimal 

and suboptimal coefficients and compares obtained NMI 

results with the ones obtained for linear measures in [14].  

 

2. METHODS 

 
2.1. Finite Element Method Modeling 

 
FEM model (adopted from [9], [13], [17]) was used to 

compare the performance of the realistic FDMs 

approximating the dimensions of the commercially available 

t-Lead TCREs (Fig. 2A and 2B) determined in [9]. First set 

of dimensions was patented in [18]. Second set of dimensions 

was published in [19]. Both sets of dimensions were scaled to 

the size of the optimal TCRE configuration from [13] with 

the outer radius of the outer ring subdivided into 9 equal 

intervals. Out of the two FDMs the one in Fig. 2A was used 

for FEM modeling in this study since it resembles the TCRE 

in Fig. 1 more closely than the FDM in Fig. 2B does.  

An evenly spaced 0.1389 mm square mesh of 1400 

× 1400 points corresponding to roughly 20 cm × 20 cm was 

located in the first quadrant of the X−Y plane over a unit 

charge dipole oriented towards the positive direction of the Z 

axis and projected to the center of the mesh. Analytical 

Laplacian and its estimates using the CRE were obtained at 

different points of the mesh for dipole depths ranging from 

0.2 to 5 cm. Four configurations derived from the FDM of the 

TCRE were evaluated and compared: TCRE (optimal), 

TCRE (suboptimal), bipolar CRE (BCRE, smaller), and 

BCRE (larger). Optimal and suboptimal TCREs used 

coefficients (6, -1) from [9] and currently used (16, -1) from 

[3], [12], respectively, while a weight of -1 is used for both 

BCRE configurations. Laplacian estimates via BCREs were 

calculated using the differential voltages between the central 

disc and each ring: middle ring for smaller BCRE estimate 

and outer ring for larger BCRE estimate respectively (Fig. 1). 

Each Laplacian estimation derived from the four CRE 

configurations was re-scaled to fit the amplitude of the 

analytical Laplacian with a constant factor derived from 

linear interpolation.  

Similar to previous works [13], [17] the normalized 

maximum error (NME) was computed for different dipole 
depths to assess the accuracy of the Laplacian estimation. The 
smaller the NME value, the more accurate the estimation. 

 ���� � ���	∆� � ∆��	���|∆�|  (1) 

where i represents the CRE configuration, ∆iv represents the 
corresponding Laplacian estimate, and ∆v represents the 

analytical Laplacian. Moreover, normalized spatial 
selectivity (NSS) has been adopted from [17] to assess the 
Laplacian amplitude decrease from a given point to its 
surrounding points at a certain distance. The greater the NSS, 
the better the ability to differentiate the central signal from its 
neighboring signals. First, spatial selectivity (SS) was 
computed as the average of the ratio of the Laplacian 
potential from displacements at four cross-shaped points: 
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where (x0, y0) is the position where spatial selectivity is 
calculated (the center of the square mesh) and d is the 
displacement equal, in this study, to the size (external 
diameter) of the electrode. Next, spatial selectivity was 
normalized by taking the ratio between the spatial selectivity 
of the CRE and that of the analytical Laplacian at the center 
of the mesh: 

 ���� � ���
��  (3) 

where i represents the CRE configuration, SSi represents the 
spatial selectivity of the specific CRE configuration, and SS 
represents the spatial selectivity of the analytical Laplacian. 
 

 

Fig. 2. Two finite dimensions models corresponding to two 

approximations of t-Lead dimensions (panels A and B). 

 
2.2. Human EEG Data and Normalized Mutual 

Information 

 
The EEG dataset was adopted from [15], [16]. To reduce 

movement related artifacts the subjects were instructed to 

remain seated and motionless to record the resting EEG of six 

healthy human subjects (ages 24-40, one female). Skin-to-

electrode impedances were kept below 5kΩ. TCRE 

(dimensions identical to t-Lead electrode from CREmedical) 

signals were preamplified using a custom preamplifier with a 

gain of 6 and both signals were band pass filtered (0.1-

100Hz) and recorded at 1200 samples per second using a 

gUSB amplifier with a normalized unit gain (g.tec medical 

engineering GmbH, Schiedlberg, Austria). The resulting data 

was segmented into non overlapping 10s yielding 173 

segments total and a total duration of 1730s. Some of the 

monopolar/recording surface (e.g. from the outer ring) and 



 

 

differential (middle ring minus central disc and outer ring 

minus central disc) signals from both the TCREs and 

conventional disc electrodes were simultaneously recorded 

using the standard 10-20 system at location P4 with the right 

mastoid process being the reference and ground. Following 

the clinical standard for EEG recordings the frequency range 

selected for signal processing using Matlab (Mathworks, 

Natick, MA) digital filtering (zero-phase fifth-order 

Butterworth) was band of 1-100Hz with 60Hz notch active to 

reduce noise.  

Common information between signals was assessed 

via NMI. NMI in probability and information theory 

expresses the mutual dependence between two random 

variables and has been used in several EEG applications [20], 

[21], [22], [23]. Based on Shannon entropy mutual 

information is computed as in (2): 

 ��� ; "� � # $%,&��� , �'�()*+ $%,&��� , �'�$%����$&��'�,-./
 (2) 

where $% and $& are the probability distributions of two 

signals, and ($%,&) their joint probability distribution. $% , $& 

and $%,& were obtained by computing the histograms of two 

signals and their joint histogram, respectively, for b bins and 

dividing them by the number of signal samples (N). Value of 

b was determined by the Rice’s rule: 

 0 �  	2√�4 	 (3) 

To set the range of ��� ; "� values to that from 0 to 1, NMI 

was used with four different normalization approaches 

(minimum, maximum, arithmetic, and geometric) [24] and it 

was calculated for all 173 10s signal segments via Matlab 

implementation that has been adopted from [25]. The 

minimum method to normalize the mutual information is to 

divide it by the minimum of individual signal entropies [24]. 

To measure the maximum NMI mutual information is divided 

by the maximum of individual signal entropies [24]. 

Measuring the arithmetic NMI between two signals involves 

dividing mutual information by the arithmetic mean of  the 

two individual signal entropies [24]. To measure the 

geometric NMI mutual information was divided by the square 

root of the product of the individual signal entropies [24]. 

All possible combinations of optimal and 

suboptimal Laplacian estimates of EEG via TCRE (tEEG) 

and via larger and smaller Laplacian estimates of EEG via 

BCRE (bEEG) configurations were performed producing the 

same six pairwise comparisons as in [14].  

 

3. RESULTS 

 
3.1. Finite Element Methods Modeling 

 
Fig. 3 shows the NME results and Fig. 4 the NSS results 

respectively for four CRE configurations and dipole depths 

ranging from 0.2 to 5 cm obtained for FDM in Fig. 2A. TCRE 

with optimal coefficients outperforms the other CRE 

configurations corresponding to the smallest error and the 

largest NSS for each dipole depth. FEM results for FDM in 

Fig. 2B are not shown but were nearly identical to those in 

Fig. 3 and Fig. 4. Suboptimal TCRE configuration 

corresponds to a mean increase (for the full range of dipole 

depths) in NME of 3.57 times over the optimal TCRE 

configuration (Fig. 3) and optimal TCRE configuration 

corresponds to a mean increase in NSS value of 1.54 times 

over the suboptimal one (Fig. 4). 

 

 

Fig. 3. Normalized maximum error of Laplacian estimation 

for four CRE configurations and dipole depths ranging from 

0.2 to 5 cm. 

 

 

Fig. 4. Normalized spatial selectivity for four CRE 

configurations and dipole depths ranging from 0.2 to 5 cm. 

 

3.2. Human EEG Data 

 
The NMI values were obtained for all six pairs of signals to 

compare with the application of four different normalization 

approaches are presented in Table 1.  

 

Table 1. Six pairwise comparisons using four different 

approaches to normalization of mutual information 

(minimum, maximum, arithmetic, and geometric).   



 

 

 
 

4. DISCUSSION 

 

In contrast with cross-correlation and coherence results from 

[14] the FEM and NMI results obtained in this study suggest 

that the difference between optimal and suboptimal 

coefficients results in a significantly different tEEG signal 

with current t-Lead users potentially experiencing  

suboptimal signal quality.  

In particular, FEM results showed that NME from 

TCRE is smaller than that from BCRE, and in the latter case, 

the smaller the electrode the smaller the error, which agrees 

with previous works [17], [26], [27], [28]. Nonetheless this 

improvement is remarkably mitigated in t-lead electrodes 

using current suboptimal coefficients. This is probably due to 

using too large a weight for the potential difference between 

the central disc and the middle ring, which makes its 

performance very similar to that of using only those poles 

which is the case of the smaller BCRE configuration for 

Laplacian estimation. The use of appropriate coefficients via 

TCRE (optimal) provides significantly smaller errors than the 

other three CRE configurations with the mean ratio of NME 

(for suboptimal over optimal coefficients for TCRE 

configuration) equal to 3.57 as well as significantly larger 

NSS values with the mean ratio (for optimal over suboptimal 

coefficients for TCRE configuration) equal to 1.54. 

Regarding the NMI results, the average values of 

approximately 0.7 between optimal and suboptimal tEEG 

suggest that they do not share the same information, for 

example, compared to value of over 0.79 between suboptimal 

tEEG and smaller bEEG based on just the middle ring and the 

central disc of the TCRE only (Table 1). In general, smaller 

bEEG has a lot more information in common with two tEEG 

configurations than it does with the larger bEEG suggesting 

that two bEEG configurations contain substantially different 

information (mean NMI of less than or equal to 0.155) despite 

of middle and outer rings being located close to one another. 

Moreover, similarly to the FEM results, higher NMI values 

corresponding to suboptimal tEEG versus smaller bEEG 

compared to optimal tEEG versus smaller bEEG stem from 

higher coefficient (16) corresponding to the portion of 

suboptimal tEEG equal to the smaller bEEG as opposed to a 

lower coefficient (6) corresponding to it in the optimal tEEG. 

Furthermore, overall trend in comparisons of tEEG 

configurations with larger bEEG configuration is the same for 

NMI values as for cross-correlation and coherence values in 

[14] even though the opposite trend could be expected due to 

larger bEEG corresponding to a smaller relative weight in 

suboptimal tEEG (roughly 1/16 of that for smaller bEEG) as 

opposed to a larger relative weight in optimal tEEG (roughly 

1/6 of that for smaller bEEG). Finally, NMI results 

demonstrate consistency between the four normalization 

approaches assessed for all six signal comparisons. 

In summary, the use of suboptimal coefficients in 

the estimation of the Laplacian potential leads to a worse 

estimation accuracy and also has a significant impact on the 

information contained in the resulting signals when working 

with real life data like human EEG. The proper selection of 

these coefficients might be even more relevant than the 

dimensional design of the CREs themselves. 
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