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Abstract: Concentric ring electrodes are noninvasive and wearable sensors for electrophysiological
measurement capable of estimating the surface Laplacian (second spatial derivative of surface
potential) at each electrode. Previously, progress was made toward optimization of inter-ring
distances (distances between the recording surfaces of a concentric ring electrode), maximizing
the accuracy of the surface Laplacian estimate based on the negligible dimensions model of the
electrode. However, this progress was limited to tripolar (number of concentric rings n equal
to 2) and quadripolar (n = 3) electrode configurations only. In this study, the inter-ring distances
optimization problem is solved for pentapolar (n = 4) and sextopolar (n = 5) concentric ring electrode
configurations using a wide range of truncation error percentiles ranging from 1st to 25th. Obtained
results also suggest consistency between all the considered concentric ring electrode configurations
corresponding to n ranging from 2 to 5 that may allow estimation of optimal ranges of inter-ring
distances for electrode configurations with n ≥ 6. Therefore, this study may inform future concentric
ring electrode design for n ≥ 4 which is important since the accuracy of surface Laplacian estimation
has been shown to increase with an increase in n.

Keywords: electrophysiology; measurement; wearable sensors; noninvasive; concentric ring elec-
trodes; Laplacian; estimation; optimization; inter-ring distances; negligible dimensions model

1. Introduction

Concentric ring electrodes (CREs; tripolar configuration shown in Figure 1A) are non-
invasive and wearable sensors for electrophysiological measurement capable of estimating
the surface Laplacian (second spatial derivative of surface potential) at each electrode,
which is not feasible with conventional disc electrodes (Figure 1B), and constitutes CRE’s
practical relevance to the wearable sensor field [1–10]. Recent examples of biomedical
applications utilizing CREs involve electroencephalograms (source localization of high-
frequency activity [5] and seizure detection [8] in epilepsy patients), electroenterograms
(identification of the intestinal slow waves [2]), and electromyograms (evaluation of swal-
lowing [11] and respiratory [10] muscle activity). Previously, progress was made toward
optimization of inter-ring distances (distances between the recording surfaces of a CRE),
maximizing the accuracy of the surface Laplacian estimate based on the negligible dimen-
sions model (NDM) of the electrode [12]. In NDM, a single point of negligible diameter
represents the central disc surrounded by concentric circles of negligible width that rep-
resent the concentric rings. In [12], the inter-ring distances optimization problem was
solved for tripolar (number of concentric rings n equal to 2) and quadripolar (n = 3) CRE
configurations and 5th and 10th percentiles of absolute value of truncation term coefficient
for the lowest remaining term order since this coefficient has been shown to be a predictor
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of the Laplacian estimation error [12,13]. Obtained results have been validated using finite
element method modeling [12].
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truncation term coefficient functions have been derived for the two aforementioned CRE 
configurations. Second, absolute values of truncation term coefficients have been com-
puted for an extensive grid of possible combinations of values of function arguments. 
Third, thresholds corresponding to percentiles ranging from 1st to 25th have been calcu-
lated. Finally, these threshold values were used to determine the ranges of optimized in-
ter-ring distances for each CRE configuration via determination and model fitting of a 
boundary hyperplane. Extension of the percentile range from [12] is related to the ques-
tion of how small can the distances between the recording surfaces become without partial 
shorting due to salt bridges becoming a significant factor affecting the accuracy of Lapla-
cian estimation. This question is still to be answered in the future using physical CRE 
prototypes. If prototype assessment results would suggest that physical considerations 
render the inter-ring distances within, for example, the 5th percentile region impractical, 
then inter-ring distances within the higher percentile region will be used, such as, for ex-
ample, the 10th percentile region (which was the only other percentile value considered 
in [12]) or higher. However, if prototype assessment results would suggest otherwise, 
then using even lower percentile values such as the 1st or the 3rd percentile could be fea-
sible. To accommodate the range of possible scenarios, this study utilizes the wide 1st to 
25th percentile range not just for PCRE and SCRE cases but also to extend the results of 
[12] for tripolar and quadripolar CRE configurations. 
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2. Methods 
2.1. Defining the Inter-Ring Distances Optimization Problem for PCRE and SCRE Configura-
tions 

Following the methodology established in [12], the main steps taken to define the 
NDM-based inter-ring distances optimization problem for the PCRE configuration (Fig-
ure 2A) with the first middle ring radius αr, the second middle ring radius βr, the third 
middle ring radius γr, and the outer ring radius r to determine the optimal range of values 
for coefficients α, β, and γ such that 0 < α < β < γ < 1 are listed below. Identical steps were 

Figure 1. Tripolar concentric ring electrode (A) and conventional disc electrode (B).

In this study, the NDM-based inter-ring distances optimization problem is solved
for pentapolar (PCRE; Figure 2A; n = 4) and sextopolar (SCRE; Figure 2B; n = 5) CRE
configurations while also extending the range of percentiles compared to [12] for all the
CRE configurations optimized so far. Specifically, the following steps have been taken: first,
truncation term coefficient functions have been derived for the two aforementioned CRE
configurations. Second, absolute values of truncation term coefficients have been computed
for an extensive grid of possible combinations of values of function arguments. Third,
thresholds corresponding to percentiles ranging from 1st to 25th have been calculated.
Finally, these threshold values were used to determine the ranges of optimized inter-ring
distances for each CRE configuration via determination and model fitting of a boundary
hyperplane. Extension of the percentile range from [12] is related to the question of how
small can the distances between the recording surfaces become without partial shorting due
to salt bridges becoming a significant factor affecting the accuracy of Laplacian estimation.
This question is still to be answered in the future using physical CRE prototypes. If
prototype assessment results would suggest that physical considerations render the inter-
ring distances within, for example, the 5th percentile region impractical, then inter-ring
distances within the higher percentile region will be used, such as, for example, the 10th
percentile region (which was the only other percentile value considered in [12]) or higher.
However, if prototype assessment results would suggest otherwise, then using even lower
percentile values such as the 1st or the 3rd percentile could be feasible. To accommodate
the range of possible scenarios, this study utilizes the wide 1st to 25th percentile range
not just for PCRE and SCRE cases but also to extend the results of [12] for tripolar and
quadripolar CRE configurations.
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Figure 2. Negligible dimensions models of pentapolar (A) and sextopolar (B) concentric ring electrode
configurations.

2. Methods
2.1. Defining the Inter-Ring Distances Optimization Problem for PCRE and SCRE Configurations

Following the methodology established in [12], the main steps taken to define the
NDM-based inter-ring distances optimization problem for the PCRE configuration
(Figure 2A) with the first middle ring radius αr, the second middle ring radius βr, the
third middle ring radius γr, and the outer ring radius r to determine the optimal range
of values for coefficients α, β, and γ such that 0 < α < β < γ < 1 are listed below. Identical
steps were taken for the SCRE configuration with an additional middle ring of radius δr
such that 0 < α < β < γ < δ < 1. More detail on each step is available in [12] for tripolar and
quadripolar CRE configurations. First, for each of the four rings, the integral of the Taylor
series has been taken along the circle of the corresponding radius. Second, the matrix
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of truncation term coefficients APCRE was determined in Equation (1). Respective matrix
ASCRE for SCRE configuration is given in Equation (2). Third, the null space of APCRE was
determined up to a (multiplication by a) constant factor. Fourth, four Taylor series integrals
were combined into a weighted linear combination solved for the Laplacian using the null
space vector as coefficients and allowing cancellation of 4th, 6th, and 8th order truncation
terms (as shown in [14], CRE with n rings allows cancellation of truncation terms up to
the order of 2n, which for the case of PCRE configuration corresponds to the 8th order).
Fifth, truncation term coefficient function cPCRE (α, β, γ, k) was derived for even truncation
term order k ≥ 10 in Equation (3). Respective SCRE configuration function cSCRE (α, β,
γ, δ, k) derived for even truncation term order k ≥ 12 is given in Equation (4). Sixth, a
constrained optimization problem was defined to minimize absolute values of truncation
term coefficients, thus allowing minimization of the truncation error and maximization of
the accuracy of surface Laplacian estimation. Seventh, this inter-ring distances optimization
problem has been solved for the lowest remaining truncation term order equal to 10 (since
it is the main contributor to the truncation error [15]) using a wide range of percentile
values (1st, 3rd, 5th, 10th, 15th, 20th, and 25th): min

0<α<β<γ<1

∣∣cPCRE(α, β, γ, 10)
∣∣. The same

steps (and percentile values) were applied to solve the inter-ring distances optimization
problem for the SCRE configuration: min

0<α<β<γ<δ<1

∣∣cSCRE(α, β, γ, δ, 12)
∣∣.

2.2. Solving the Inter-Ring Distances Optimization Problem for PCRE and SCRE Configurations

Solving the inter-ring distances problem for PCRE and SCRE configurations following
the approach from [12] involves using a wide range of truncation error percentiles to
identify points on the boundary hyperplane. For the PCRE configuration, absolute values
of truncation term coefficients based on function cPCRE (α, β, γ, k) from Equation (3) were
computed for all the combinations of values of 0 < α < β < γ < 1 with the increment of
1% (or 0.01) and k = 10. For the SCRE configuration, function cSCRE (α, β, γ, δ, k) from
Equation (4) was computed for all the combinations of values of 0 < α < β < γ < δ < 1 with
the same increment of 1% and k = 12. Percentiles were used to find the values of α, β, and
γ (for PCRE configuration) and α, β, γ, and δ (for SCRE configuration) that corresponded
to points on the boundary hyperplane separating the absolute values of the 10th order (for
PCRE) and of the 12th order (for SCRE) truncation term coefficients below and above the
specific percentile. The resulting boundary hyperplane points were fitted with a nonlinear
regression model of the form αβγ = m for PCRE and αβγδ = m for SCRE, respectively, where
m is a real constant. The choice of these particular models stemmed from their consistency
with the models used for tripolar and quadripolar CREs in [12] which is discussed in the
Section 4 of this paper.

APCRE =

 α4 β4 γ4 14

α6 β6 γ6 16

α8 β8 γ8 18

 =

 α4 β4 γ4 1
α6 β6 γ6 1
α8 β8 γ8 1

, (1)

ASCRE =


α4 β4 γ4 δ4 1
α6 β6 γ6 δ6 1
α8 β8 γ8 δ8 1
α10 β10 γ10 δ10 1

, (2)

cPCRE(α, β, γ, k) = − 4α−2β−2γ−2

(α2−1)(α2−β2)(β2−1)(α2−γ2)(β2−γ2)(γ2−1)

×

 αkβ4(β2 − 1
)
γ4(β2 − γ2)(γ2 − 1

)
+ α8

(
βk(γ4 − γ6)+ β4

(
γ6 − γk

)
+ β6

(
γk − γ4

))
+

+α4
(

βk(γ6 − γ8)+ β6
(

γ8 − γk
)
+ β8

(
γk − γ6

))
+ α6

(
βkγ4(γ4 − 1

)
+ β8

(
γ4 − γk

)
+ β4

(
γk − γ8

))  , (3)
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cSCRE(α, β, γ, δ, k) = 4α2β2δ2γ2

(α2−1)(β2−1)(δ2−1)(γ2−1)

×

 1 +
αk−4(β2−1)(δ2−1)(γ2−1)
(α2−β2)(α2−δ2)(α2−γ2)

− (α2−1)βk−4(δ2−1)(γ2−1)
(α2−β2)(β2−δ2)(β2−γ2)

+

+
(α2−1)(β2−1)δk−4(γ2−1)
(α2−δ2)(β2−δ2)(δ2−γ2)

− (α2−1)(β2−1)(δ2−1)γk−4

(α2−γ2)(γ2−β2)(γ2−δ2)

 . (4)

3. Results

Obtained results for CRE configurations including PCRE and SCRE as well as an
extension of results for tripolar (no curve or hyperplane fitting necessary) and quadripolar
(nonlinear boundary fitted with the rectangular hyperbola curve αβ = m) CREs to the same
range of percentiles are presented in Table 1. Table 1 also includes the respective values
of the goodness-of-fit metric R-squared (R2) that represents the percentage of the total
variation in the data explained by the model fit for all the CRE configurations except for
the tripolar one. The plot of the fitted boundary hyperplane model separating the absolute
values of the 10th order truncation term coefficients below and above the 5th percentile
for the PCRE configuration is presented in Figure 3. The goodness-of-fit metric R2 for the
fitted model in Figure 3 was equal to 0.995 or 99.5% (Table 1).

Table 1. Values of the model fitting constant (m) and goodness-of-fit metric R-squared (R2) for a
range of CRE configurations and percentile values.

Percentile
Tripolar CRE Quadripolar CRE PCRE SCRE

m R2 m R2 m R2 m R2

1st 0.098 - 0.094 0.997 0.096 0.989 0.092 0.986

3rd 0.171 - 0.166 0.998 0.165 0.994 0.158 0.991

5th 0.221 1 - 0.214 1 0.998 1 0.213 0.995 0.204 0.992

10th 0.313 1 - 0.303 1 0.998 0.3 0.996 0.288 0.991

15th 0.383 - 0.372 0.998 0.367 0.995 0.352 0.99

20th 0.442 - 0.43 0.998 0.424 0.995 0.407 0.989

25th 0.494 - 0.481 0.998 0.474 0.994 0.455 0.987
1 results reported in [12].
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Figure 3. Fitted boundary hyperplane model (m = 0.213; R2 = 0.995) separating the absolute values
of the 10th order truncation term coefficients below and above the 5th percentile for the PCRE
configuration.

4. Discussion

This study demonstrates that the NDM-based inter-ring distances optimization ap-
proach from [12] can be extended from tripolar and quadripolar CRE configurations to
PCREs and SCREs. Obtained results are presented in Table 1 and can be interpreted easily
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for a specific percentile value. For example, for the 5th percentile, optimal ranges of values
of α, β, and γ (for PCRE configuration) and α, β, γ, and δ (for SCRE configuration) are
determined by inequalities 0 < α < β < γ < 1 and αβγ ≤ 0.213 and by inequalities 0 < α < β
< γ < δ < 1 and αβγδ ≤ 0.204, respectively. Moreover, this inter-ring distances optimization
approach can be extended further to any larger number of concentric rings n even though
the number of decision variables increases by one for each additional concentric ring
(Figure 2), further increasing the complexity of the optimization problem. For example,
solving it for the septapolar (n = 6) CRE configuration results in the total number of values
of the 14th order truncation term coefficient function computed with the same increment of
1% used in this study equal to 71,457,453. This is compared to the 156,830 values of cPCRE

(α, β, γ, 10) and 3,762,786 values of cSCRE (α, β, γ, δ, 12) functions used in this study. Deter-
mining the points on the boundary hyperplane, which requires checking every function
value for falling below the specific percentile while at least one of the surrounding values
within the 1% increment along the α, β, γ, δ, and ε (for septapolar CRE) axes falls above
this percentile, becomes computationally intensive. Fortunately, the result described below
provides an opportunity to roughly estimate optimal ranges for larger values of n.

Another important result of this study is highlighting the consistency between fitted
models with high goodness-of-fit (R2 in Table 1) as well as their constants (m in Table 1)
for CRE configurations with 2 to 5 concentric rings. Specifically, fitted models range from
α ≤ m (tripolar CRE) to αβ ≤ m (quadripolar CRE) to αβγ ≤ m (PCRE) to αβγδ ≤ m (SCRE).
It is not unreasonable to hypothesize that for the septapolar CRE configuration with an
additional middle concentric ring of radius εr such that 0 < α < β < γ < δ < ε < 1 the
fitted model with high goodness-of-fit would be αβγδε ≤ m, etc. Moreover, even values of
constant m for the aforementioned fitted models are consistent for a specific percentile. For
example, for the 5th percentile, m ranges from 0.221 (tripolar CRE) to 0.214 (quadripolar
CRE) to 0.213 (PCRE) to 0.204 (SCRE). It is not unreasonable to hypothesize that for the
septapolar CRE configuration, the value of m will be less than or equal to 0.204. It should
also be noted that in Table 1 values of R2 are decreasing for each percentile value with
an increase in n while still remaining high (>0.985) overall. For example, for the same
5th percentile, the value of R2 decreases from 0.998 (quadripolar CRE) to 0.995 (PCRE) to
0.992 (SCRE).

5. Conclusions

Ability to accurately estimate the surface Laplacian at each electrode constitutes the
primary biomedical significance of CREs and this study allows maximizing estimation
accuracy for two additional electrode configurations with larger numbers (4 and 5) of
concentric rings n which is important since it has been shown that accuracy of Laplacian
estimation via CREs increases with an increase in n. Other contributions to the technical
novelty of this study include extension of the previous optimization results for CRE
configurations with fewer concentric rings (n equal to 2 and 3) to a wider truncation
error percentile range to demonstrate consistency between all the considered electrode
configurations that may allow estimation of optimal ranges of inter-ring distances for CREs
with n ≥ 6.
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