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Conventional electroencephalography with disc electrodes has major drawbacks including
poor spatial resolution, selectivity and low signal-to-noise ratio that are critically limiting
its use. Concentric ring electrodes, consisting of several elements including the central disc
and a number of concentric rings, are a promising alternative with potential to improve all
of the aforementioned aspects significantly. In our previous work, the tripolar concentric
ring electrode was successfully used in a wide range of applications demonstrating its
superiority to conventional disc electrode, in particular, in accuracy of Laplacian estima-
tion. This paper takes the next step toward further improving the Laplacian estimation
with novel multipolar concentric ring electrodes by completing and validating a general
approach to estimation of the Laplacian for an (n + 1)-polar electrode with n rings using
the (4n + 1)-point method for n P 2 that allows cancellation of all the truncation terms
up to the order of 2n. An explicit formula based on inversion of a square Vandermonde
matrix is derived to make computation of multipolar Laplacian more efficient. To confirm
the analytic result of the accuracy of Laplacian estimate increasing with the increase of
n and to assess the significance of this gain in accuracy for practical applications finite ele-
ment method model analysis has been performed. Multipolar concentric ring electrode
configurations with n ranging from 1 ring (bipolar electrode configuration) to 6 rings
(septapolar electrode configuration) were directly compared and obtained results suggest
the significance of the increase in Laplacian accuracy caused by increase of n.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Electroencephalography (EEG) is an essential tool for
brain and behavioral research and is used extensively in
neuroscience, cognitive science, cognitive psychology,
and psychophysiology. EEG is also one of the mainstays
of hospital diagnostic procedures and pre-surgical plan-
ning. Despite scalp EEG’s many advantages end users
struggle with its poor spatial resolution, selectivity and
low signal-to-noise ratio, which are EEG’s biggest draw-
backs critically limiting the research discovery and diagno-
sis [1–3].

EEG’s poor spatial resolution is primarily due to (1) the
blurring effects of the volume conductor with disc elec-
trodes; and (2) EEG signals having reference electrode prob-
lems as idealized references are not available with EEG [2].
Interference on the reference electrode contaminates all
other electrode signals [2]. The application of the surface
Laplacian (the second spatial derivative of the potentials
on the body surface) to EEG has been shown to alleviate
the blurring effects enhancing the spatial resolution and
selectivity, and reduce the reference problem [4–6].
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While several methods were proposed for estimation of
the surface Laplacian through interpolation of potentials
on a surface and then estimating the Laplacian from an
array of disc electrodes [5–9], concentric ring electrodes
(CRE) have shown more promise. The CREs can resolve
the reference electrode problems since they act like closely
spaced bipolar recordings [2]. CREs are symmetrical allevi-
ating electrode orientation problems [10]. They also act as
spatial filters reducing the low spatial frequencies and
increasing the spatial selectivity [10,11]. Finally, even
bipolar CREs, consisting of just two elements including a
single ring and the central disc, improve the radial attenu-
ation of the conventional disc electrode from 1/r3 to 1/r4

with larger numbers of poles having the potential to
enhance radial attenuation even further [12].

Tripolar CREs (TCRE; the largest number of CRE poles
currently used), consisting of three elements including
the outer ring, the middle ring, and the central disc
(Fig. 1B), are distinctively different from conventional disc
electrodes that have a single element (Fig. 1A). TCREs have
been shown to estimate the surface Laplacian directly
through the nine-point method (NPM), an extension of
the five-point method (FPM) used for bipolar CREs, and sig-
nificantly better than other electrode systems including
bipolar and quasi-bipolar CREs [13,14]. Compared to EEG
with conventional disc electrodes Laplacian via TCREs have
been shown to have significantly better spatial selectivity
(approximately 2.5 times higher), signal-to-noise ratio
(approximately 3.7 times higher), and mutual information
(approximately 12 times lower) [15]. TCREs also have very
high common mode noise rejection providing automatic
artifact attenuation,�100 dB one radius from the electrode
[14]. Because of such unique capabilities TCREs have found
numerous applications in a wide range of areas including
brain–computer interface [16,17], seizure onset detection
[18,19], seizure attenuation using transcranial focal stimu-
lation applied via TCREs [20–23], detection of high-
frequency oscillation and seizure onset zones [24], etc.
These applications suggest experimental practicality of
further increasing the number of poles in noninvasive elec-
trophysiological electrodes.

Taking a first, preliminary step toward development of
multipolar CREs, the Laplacian has been derived for a
general case of (n + 1)-polar CRE with n rings using
the (4n + 1)-point method for nP 2 demonstrating how
the accuracy of the Laplacian estimate increases with the
Fig. 1. Conventional disc electrode (A) and tripolar concentric ring
electrode (B).
increase of n due to elimination of higher order truncation
terms [25]. This approach allows canceling all the trunca-
tion terms up to the order of 2n which has been shown
to be the highest order achievable for a CRE with n rings
[25]. Furthermore, the proposed general approach has
been illustrated with two examples numerically deriving
the Laplacian estimates for TCRE and [13–24], for the first
time, quadripolar CRE (QCRE) [25].

This preliminary study had two fundamental shortcom-
ings. First, for any nP 2 the Laplacian estimates in the
form of the null space vectors could be calculated numer-
ically through finding the column echelon form of the
matrix using methods like Bareiss algorithm which for
exactly given integer matrices have been shown to be more
efficient than the standard Gaussian elimination [26].
However, deriving an explicit formula for Laplacian esti-
mates as a function of n would be even more efficient in
terms of its computation. Second, computer modeling
was needed to confirm the analytic result of the accuracy
of Laplacian estimate increasing with the increase of n
and to assess the significance of this gain in accuracy for
practical applications.

This paper addresses both shortcomings of the prelimi-
nary study [25]. First, explicit formula for multipolar Lapla-
cian is derived based on the inversion of a square
Vandermonde matrix completing the proposed approach
to estimation of multipolar Laplacian. Second, multipolar
CRE configurations with n ranging from 1 (bipolar CRE)
to 6 (septapolar CRE) were directly compared in accuracy
of Laplacian estimation using finite element method
(FEM) model analysis with a single dipole. While FEM
modeling is commonly used to assess and compare differ-
ent electrode configurations [27,28], the model used in this
paper was adopted from our previous studies where it was
used to compare bipolar, quasi-bipolar, and tripolar CRE
configurations [13,14].

This paper is organized as follows: preliminaries and
notations for the proposed approach for multipolar Lapla-
cian estimation including basic cases of FPM and NPM as
well as the general approach for (n + 1)-polar CRE with n
rings are presented in the Material and Methods section.
This section also contains all the details on the FEM mod-
eling used to compare different multipolar CRE configura-
tions as well as on statistical analysis of obtained results.
Main results including derivation of the explicit formula
for multipolar Laplacian estimate based on the inversion
of a square Vandermonde matrix and FEM modeling
results are presented in the Results section. Discussion of
the obtained results and plans for future work are pre-
sented in the Discussion section followed by the overall
conclusion.
2. Material and methods

2.1. Notations and preliminaries

2.1.1. Five-point method (bipolar CRE)
As shown in Fig. 2 v0 through vnr,4 are the potentials at

points p0 through pnr,4, respectively. To simplify the narra-
tive, v0 through vnr,4 may also signify points p0 through



Fig. 2. Regular plane square grid with interpoint distance equal to r.
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pnr,4. v0, vr,1, vr,2, vr,3 and vr,4, with a spacing of r are applied
in the FPM (a bipolar CRE configuration Laplacian estimate)
following Huiskamp’s calculation of the Laplacian [29]. The
Laplacian potentials at point p0 are calculated using Taylor
expansion:

Dv0 ¼ @2v
@x2

þ @2v
@y2

¼ 1
r2

X4
i¼1

v r;i � 4v0

 !
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is the truncation error. Expression (1) can be generalized
by taking the integral along the circle of radius r
around p0 of the Taylor expansion. Defining x = rcos(h)
and y = rsin(h) as in Huiskamp we have [29]:
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where 1
2p

R 2p
0 vðr; hÞdh is the average potential on the ring of

radius r and v0 is the potential on the central disc of the
bipolar CRE.

2.1.2. Nine-point method (TCRE)
To derive the Laplacian for the TCRE using NPM we add

another FPM applying the integral along a circle of radius
2r (v0, v2r,1, v2r,2, v2r,3 and v2r,4 on Fig. 2) around point p0
[13,14]. The following is obtained for the average potential
on the ring of radius 2r and disc:
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Next, we multiply (2) by 16 and subtract (3) canceling
the fourth-order truncation term and resulting in the
Laplacian estimate:
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where 1
2p

R 2p
0 vð2r; hÞdh is the average potential on the

outer ring of radius 2r, 1
2p

R 2p
0 vðr; hÞdh is the average poten-

tial on the middle ring of radius r, and v0 is the potential on
the central disc of the TCRE [13,14]. In practice, (4) is com-
puted using custom preamplifier boards that for each TCRE
combine potentials from two concentric rings and central
disc into surface Laplacian estimation signal (termed tEEG
for electroencephalography via TCREs). This surface
Laplacian estimate is the only signal sent to the amplifier
from each TCRE.

2.1.3. General (4n + 1)-point method for (n + 1)-polar CRE
with n rings

Generalizing (2) and (3) for a case of CRE with n rings
(nP 2) we obtain a set of n FPM equations, one for each
ring with radii ranging from r to nr (v0, vnr,1, vnr,2, vnr,3
and vnr,4 on Fig. 2) around point p0 for which we have:
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To estimate the Laplacian for this general case the n
equations are combined in a way that cancels all the trun-
cation terms up to the highest order that can be achieved
for n rings increasing the accuracy of the Laplacian esti-
mate. In order to find such a combination we arrange the
coefficients lk of the truncation terms with the general

form lrð Þk
k!

R 2p
0
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j¼0 sin
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for order k

ranging in increments of 2 from 4 to some even positive
integerm (mP 4) and ring radius multiplier l ranging from
1 (Eq. (2)) to n (Eq. (5)) into the (m � 2)/2 by n matrix A as
follows:

A ¼

14 24 � � � n4
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..

. ..
. . .

. ..
.
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0
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A matrix equation of the form:

Ax ¼ 0 ð7Þ
is equivalent to a homogeneous system of linear equations
where 0 is the (m � 2)/2-dimensional zero vector and x is
the n-dimensional vector that allows the cancellation of
all the truncation terms up to the order of m by setting



Fig. 3. Schematic of the finite element method computer model with a
square mesh of size 1700 � 1700 used to assess and compare the
accuracy of Laplacian estimates for multipolar concentric ring electrode
configurations ranging from bipolar to septapolar.
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the linear combination of n coefficients lk corresponding to
all ring radii for each order k equal to 0 [25].

The existence of nontrivial solution (x– 0) of equation
(7) depends on the relationship between the number of
rows (m � 2)/2 and the number of columns n of matrix A.
It is known that for homogeneous systems nontrivial solu-
tions exist only when the system is underdetermined, i.e.
(m � 2)/2 < n [30]. Moreover, if A is real as in our case, a
real nontrivial solution exists. The largest number of rows
the matrix A from (6) may have to stay underdetermined is
n � 1, so in order to find the highest truncation term order
m that can be canceled with n rings CREs we solve
(m � 2)/2 = n � 1 which yields m = 2n. Therefore, matrix A
can be rewritten as an n � 1 by n matrix A0 that is a func-
tion only of the number of the rings n:

A0 ¼

1 24 � � � n4

1 26 � � � n6

..
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1 22n � � � n2n

0
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Equivalently to substituting A0 for A into (7) it can be
observed that the same nontrivial solutions are given by
the null space (or kernel) of matrix A0 [30]. It should be
noted that null space vectors used for Laplacian estimates
are not unique. From the properties of matrix multiplica-
tion it is known that for any vector x that belongs to the
null space of matrix A and a scalar c the scaled vector cx
also belongs to the null space of the same matrix A since
ðcAÞx ¼ cðAxÞ. Therefore, any scaled version of given null
space vector would also be a null space vector.

2.2. FEM modeling

All the FEM modeling was performed using Matlab
(Mathworks, Natick, MA). The modeling scripts are avail-
able from the authors (OM) upon request. To compare
the discrete Laplacian estimates including the bipolar
(number of rings n = 1), tripolar (n = 2), quadripolar
(n = 3), quintopolar (n = 4), sextopolar (n = 5), and septapo-
lar (n = 6) multipolar CRE configurations directly a FEM
computer model was developed with a 1700 � 1700
evenly spaced mesh located in the first quadrant of the
X–Y plane above a unit charge dipole projected to the cen-
ter of the mesh and oriented toward the positive direction
of the Z axis as shown in Fig. 3. The dipole was moved
along the Z axis to evaluate the effect of depth on accuracy
of Laplacian estimates.

At each point of the mesh, the electric potential / gen-
erated by a unity dipole was calculated with the formula
for electric potential due to a dipole in a homogeneous
medium of conductivity r [31]:

/ ¼ 1
4pr

ðrp � rÞ � p
jrp � rj3

ð9Þ

where r ¼ ðx; y; zÞ and p ¼ ðpx; py; pzÞ represent the location
and the moment of the dipole and rp ¼ ðxp; yp; zpÞ repre-
sents the observation point. The conductivity r of the med-
ium was taken to be 7.14 mS/cm to emulate biological
tissue [32]. For this FEM model it was assumed that the
medium was homogeneous and p ¼ ð0;0;1Þ making the
term p=4pr in (9) constant. The analytical Laplacian was
then calculated at each point of the mesh, by taking the
second derivative of the electric potential / [31]:

L ¼ D/ ¼ @2/
@x2

þ @2/
@y2

ð10Þ

According to He and Wu [31], this results in:

L ¼ 3
4pr

5 zp � z
� 	2 ðrp � rÞ � p

jrp � rj7 � ðrp � rÞ � pþ 2ðzp � zÞpz

jrp � rj5
" #

ð11Þ
Laplacian estimates for six multipolar CRE configura-

tions ranging from bipolar to septapolar were computed
at each point of the mesh where appropriate boundary
conditions could be applied. In order to show that there
is no inherent increase in the size of CREs due to the num-
ber of poles we ensured that all modeled multipolar CREs
have the same dimensions despite having different num-
bers of rings. The largest ring radius for all the CRE config-
urations was selected to be equal to 60r since 60 is the
least common multiple of all the integers from 1 to 6.
Moreover, the process was repeated for different interpoint
distances using integer multiples of r ranging from 1 to 10.
Therefore, in the worst case scenario of a CRE being mod-
eled with the interpoint distance using a multiple value
equal to 10 the number of points on the mesh where
appropriate boundary conditions could be applied to com-
pute Laplacian estimates was equal to 500 � 500 (since for
each dimension of the mesh 1700 � 2 ⁄ 60 ⁄ 10 = 500).
Correspondingly, in the best case scenario for a multiple
value equal to 1 the number of points on the mesh where
Laplacian estimates were computed was equal to
1580 � 1580 (1700 � 2 ⁄ 60 ⁄ 1 = 1580). The model was
tied to the physical dimensions (in cm) through the target
physical size of the multipolar CREs. The smallest CRE
diameter was equal to 0.5 cm (multiple of r equal to 1)
and the largest was equal to 5 cm (multiple of r equal to
10). The dipole depth ranged from 1 cm to 5 cm.
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Derivation of Laplacian estimate coefficients for multi-
polar CRE configurations was performed using the
approach proposed in this paper. The following sets of
coefficients were used: (16, �1) for tripolar, (270, �27, 2)
for quadripolar [25], (8064, �1008, 128, �9) for quintopo-
lar, (42,000, �6000, 1000, �125, 8) for sextopolar, and
(1,425,600, �222,750, 44,000, �7425, 864, �50) for sep-
tapolar multipolar CRE configurations. For example, for
the case of TCRE, (16, �1) is one of the integer vectors of
the null space of matrix A0 from (8) for n = 2. It was used
to estimate the surface Laplacian for TCRE in (4) as well
as in [13–24] and other works utilizing TCREs. In a similar
way, null space of matrix A0 from (8) can be calculated off-
line for any given n with the null space vector becoming
the coefficients of the linear combination of differences
of potentials from each of the n rings and the central disc
respectively to produce Laplacian estimate similar to the
one derived in (4) for TCRE. Preamplifier boards for multi-
polar CREs can be designed in a similar way to the ones
currently used for TCREs. Single preamplifier board is
needed for each multipolar CRE to estimate surface Lapla-
cian to be sent to the amplifier.

These six estimates were then compared with the cal-
culated analytical Laplacian for each point of the mesh
where corresponding Laplacian estimates were computed
using Relative Error and Maximum Error measures
[13,14,29]:

Relative Errori ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Dv � Div
� �2
P

Dvð Þ2

vuuut ð12Þ

Maximum Errori ¼ max jDv � Div j ð13Þ
where i represents the Laplacian estimation method (bipo-
lar, tripolar, quadripolar, quintopolar, sextopolar or septap-
olar) used to approximate the Laplacian potential Div and
Dv represents the analytical Laplacian potential.

Statistical analysis of FEM modeling results was per-
formed using Design-Expert software (Stat-Ease Inc., Min-
neapolis, MN, USA). Full factorial design of analysis of
variance (ANOVA) was used with three numerical factors
[33]. The first factor (A) was the dipole depth presented
at five levels uniformly distributed in the range from
1 cm to 5 cm. The second factor (B) was the CRE diameter
presented at ten levels uniformly distributed in the range
from 0.5 cm to 5 cm. The third factor (C) was the number
of rings in the multipolar CRE configuration presented at
six levels ranging from one (bipolar CRE) to six (septapolar
CRE). Two response variables were the Relative Error and
Maximum Error computed for each of the 5 ⁄ 10 ⁄ 6 = 300
combinations of levels of three factors.

3. Results

3.1. Explicit formula for multipolar Laplacian estimate for
(n + 1)-polar CRE with n rings

In order to derive the explicit formula for the null space
vectors of n � 1 by n matrix A0 from (8) as a function of n
we will turn A0 into a square Vandermonde matrix and
use the explicit formula for the inversion of such matrix
that has been derived by Knuth [34].

We want to solve A0x ¼ 0 that can be re-written as:
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where 0 is the (n � 1)-dimensional zero vector and

x ¼ x1; . . . ; xn½ �T .
Without loss of generality, we can divide both sides of

(14) by x1 resulting in:
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or, equivalently:
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where A00 is the n � 1 by n � 1 square matrix. To turn A00

into a Vandermonde matrix we re-write (16) as:
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Then we let yi ¼ iþ1ð Þ4xiþ1
xi

for i = 1, . . . , n � 1 in (17) resulting

in:
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The transpose of A000 in (18) follows the classical form of
the square Vandermonde matrix as defined by Knuth [34]:

B¼ A000� 	T ¼
1 22 � � � 22ðn�2Þ
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where ai = (i + 2)2 for i = 0, . . . , n � 2.
Therefore, substituting B from (19) into the transpose of

(18) we have:
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yT ¼� A000� 	�11
� �T

¼�1T A000� 	�1
� �T

¼�1T A000� 	T� ��1
¼�1TB�1
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This ultimately gives us:

y ¼ � 1TB�1
� �T

¼ � B�1
� �T

1 ð21Þ

where 1 is a column vector of all ones from (18) and expli-
cit formula for B�1 as a function of n has been derived by
Knuth [34].

3.2. FEM modeling

Two error measures were computed for six Laplacian
estimation methods corresponding to the bipolar, tripolar,
quadripolar, quintopolar, sextopolar, and septapolar CRE
configurations using (12) and (13). Resulting Relative and
Maximum Errors are presented for multipolar CRE diame-
ters ranging from 0.5 cm to 5 cm and dipole depth ranging
from 1 cm to 5 cm on a semi-log scale in Figs. 4 and 5
respectively.

The effect of factors A (dipole depth), B (CRE diameter),
and C (number of rings) on Relative and Maximum Errors
was assessed and the ANOVA results suggest that all three
factors have statistically significant effects in the model
(Relative Error: d.f. = 3, F = 146.72, p < 0.0001; Maximum
Error: d.f. = 3, F = 228.32, p < 0.0001) for the optimal power
transformations (Relative Error: lambda = �1.01; Maxi-
mum Error: lambda = �2.11) determined using the Box-
Cox procedure [33]. The effects of the main factors were:
A (Relative Error: d.f. = 1, F = 71.37, p < 0.0001; Maximum
Error: d.f. = 1, F = 233.83, p < 0.0001), B (Relative Error: d.
f. = 1, F = 135.27, p < 0.0001; Maximum Error: d.f. = 1,
F = 103.15, p < 0.0001), and C (Relative Error: d.f. = 1,
F = 233.52, p < 0.0001; Maximum Error: d.f. = 1,
F = 347.97, p < 0.0001).

4. Discussion

The contribution of this paper is twofold. First, the pro-
posed general approach to estimation of surface Laplacian
for novel multipolar CREs with any given number of rings
was completed by deriving an explicit formula based on
the inversion of a square Vandermonde matrix. Second,
accuracies of Lapacian estimates corresponding to multi-
polar CRE configurations ranging from bipolar to septapo-
lar were directly compared using FEM model analysis.
FEM modeling was used as a measure to demonstrate the
practical usefulness of the approach taking it beyond the
preliminary, conceptual stage [25]. FEM modeling results
obtained in this paper are consistent with the previous
FEM modeling results obtained for bipolar and tripolar
CRE configurations only [13,14] and confirm the theoreti-
cal results stemming from the mathematical derivation of
Laplacian for multipolar CREs [25]. Therefore, this paper
provides a comprehensive theoretical basis for novel mul-
tipolar CREs as well as validation of analytic results via
FEM modeling for CRE configurations up to the septapolar
one. Biomedical significance of CREs is related to the fact
that they allow estimating surface Laplacian directly at
the electrode instead of combining the data from an array
of conventional disc (single pole) electrodes, so further
improving the accuracy of Laplacian estimate recorded
via multipolar CREs may be critical to advancement of non-
invasive electrophysiological electrode design with appli-
cation areas not limited to electroencephalography,
electrocardiography, and electromyography. Moreover,
other potential advantages of multipolar CREs with higher
numbers of poles need to be investigated including, for
example, improved control of the electric field used for sei-
zure attenuation compared to the one that current tran-
scranial focal stimulation applied via TCREs can offer
[20–23].

The ANOVA results for comparison of global Lapacian
estimates corresponding to different multipolar CRE con-
figurations have showed the significance of all three fac-
tors included in this FEM model. While it was important
to confirm that the accuracy of Laplacian estimation
increases (Relative and Maximum Errors decrease) with
an increase of the dipole depth (factor A) and decreases
(Relative and Maximum Errors increase) with an increase
of the CRE diameter (factor B), the most important result
is that, for the case of the factor C, the multipolar Laplacian
estimates for larger numbers of rings are significantly bet-
ter than the ones for smaller numbers of rings at approxi-
mating the analytical Laplacian. This result supports the
theoretical findings that for an (n + 1)-polar CRE with n
rings the proposed general Laplacian estimation approach
allows cancellation of all the truncation terms up to the
order of 2n increasing the estimation accuracy.

However, even though the statistical analysis showed
that, in general, both Relative and Maximum Errors were
decreasing significantly with the increase in the number
of CRE rings, using a realistic FEM model also revealed that
for dipoles at larger depths and for smaller sizes of CREs
the difference between the multipolar CRE configurations
with large (4–6) numbers of rings becomes negligible. This
can be seen from Figs. 4 and 5 at dipole depth of 3 cm and
larger (panels C–E) and the CRE diameter of 1 cm and smal-
ler. This is an intuitive result suggesting the existence of an
upper bound on the maximum practical number of rings to
include in the multipolar CRE. Larger number of rings
means larger number of independently computed samples
of the potentials to include into the Laplacian estimate pro-
viding a closer approximation of the analytical Laplacian.
However, decreasing the distance between rings/samples
by decreasing the size of the CRE and/or decreasing the dif-
ference between the potentials to sample by increasing the
depth of the source makes the effect of additional indepen-
dently computed samples negligible. Existence of an upper
bound on the maximum practical number of rings also
suggests the possibility of optimizing the design of a mul-
tipolar CRE for specific applications taking into account the
requirements on the CRE size and expected maximum
depth of the sources to record from. For example, currently
used TCREs have a diameter of 1 cm [13–24]. For EEG
applications it is not unrealistic to assume possibility of
detectable sources at depths of up to 5 cm from the scalp.
Based on the FEMmodeling results presented in Figs. 4 and
5 (panel E) the optimal multipolar CRE configuration for
this CRE size and source depth would be a sextopolar
CRE while a septapolar CRE would not result in significant



Fig. 4. Relative Error of six Laplacian estimates corresponding to the bipolar, tripolar, quadripolar, quintopolar, sextopolar, and septapolar CRE
configurations for multipolar CRE diameters ranging from 0.5 cm to 5 cm. Panels A–E correspond to dipole depth ranging from 1 cm to 5 cm respectively.

Fig. 5. Maximum Error of six Laplacian estimates corresponding to the bipolar, tripolar, quadripolar, quintopolar, sextopolar, and septapolar CRE
configurations for multipolar CRE diameters ranging from 0.5 cm to 5 cm. Panels A–E correspond to dipole depth ranging from 1 cm to 5 cm respectively.
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improvement in accuracy of Laplacian estimation. Optimal
numbers of rings and sizes of multipolar CREs may be
selected in a similar way for different applications in elec-
trocardiography, electromyography, etc. Finally, it can be
seen from Figs. 4 and 5 that Relative and Maximum Errors
do not always decrease with an increase of the CRE size.
For example, for dipole depth of 5 cm (panel E) both errors
increase with an increase of the septapolar CRE diameter
from 0.5 cm to 1 cm. We believe that this effect is due to
the fact that the upper bound on the maximum practical
number of rings is different for CREs of different sizes.
Panel E of Figs. 4 and 5 suggest that the optimal number
of rings for CRE with diameter of 0.5 cm is 4 while for
CRE with diameter of 1 cm it is 5 and for CRE with diameter
of 1.5 cm it is 6. The question is which one of these three
upper bound CRE configurations offers a more accurate
Laplacian estimate. Panel E of Figs. 4 and 5 suggest that it
is the septapolar CRE with diameter of 1.5 cm, i.e. that
the number of rings as a factor has a greater effect on Rel-
ative and Maximum Errors than does the diameter of the
CRE. This is confirmed by the results of the statistical anal-
ysis since for both errors factor C (number of rings) has lar-
ger F values than factor B (CRE diameter) for the same
number of degrees of freedom equal to 1 (Relative Error:
F = 233.52 and F = 135.27 for factors C and B respectively;
Maximum Error: F = 347.97 and F = 103.15 for factors C
and B respectively).

Further investigation is needed to confirm the obtained
FEM modeling results. The plan for future work includes
several directions and is based on limitations of the current
study. First direction is to use realistic concentric sphere
head models to confirm the modeling results obtained in
this study. Second direction is to create first prototypes
of multipolar CREs with 3 and more rings and test them
on real life data, both phantom and from human subjects.
Finally, all the multipolar CRE configurations assessed in
this study have equal distances between the concentric
rings. The potential of CREs with variable (increasing or
decreasing with the increase of the distance to the central
disc) distances between the consecutive rings to improve
the accuracy of Laplacian estimation needs to be assessed.
5. Conclusions

With tripolar concentric ring electrodes (CREs) gaining
increased recognition in a wide range of applications due
to their unique capabilities this study assesses the poten-
tial of novel multipolar CREs. Results of mathematical anal-
ysis and finite element method modeling suggest that
multipolar CREs with larger numbers of rings may offer
more accurate Laplacian estimation than the ones with
smaller numbers of rings further confirming the superior-
ity of CREs as an alternative to conventional disc electrodes
for applications not limited to electroencephalography.
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