
  

  

Abstract— Noninvasive concentric ring electrodes are a 
promising alternative to conventional disc electrodes. 
Currently, superiority of tripolar concentric ring electrodes 
over disc electrodes, in particular, in accuracy of Laplacian 
estimation has been demonstrated in a range of applications. In 
our recent work we have shown that accuracy of Laplacian 
estimation can be improved with multipolar concentric ring 
electrodes using a general approach to estimation of the 
Laplacian for an (n + 1)-polar electrode with n rings using the 
(4n + 1)-point method for n ≥ 2. This paper takes the next step 
toward further improving the Laplacian estimate by proposing 
novel variable inter-ring distances concentric ring electrodes. 
Derived using a modified (4n + 1)-point method, linearly 
increasing inter-ring distances tripolar (n = 2) and quadripolar 
(n = 3) electrode configurations are analytically compared to 
their constant inter-ring distances counterparts using 
coefficients of the Taylor series truncation terms. Obtained 
results suggest that increasing inter-ring distances electrode 
configurations may decrease the truncation error of the 
Laplacian estimation resulting in more accurate Laplacian 
estimates compared to respective constant inter-ring distances 
configurations. For currently used tripolar electrode 
configuration the truncation error may be decreased more than 
two-fold while for the quadripolar more than seven-fold 
decrease is expected. 

I. INTRODUCTION 

Electroencephalography (EEG) is an essential tool for 
brain and behavioral research as well as one of the mainstays 
of hospital diagnostic procedures and pre-surgical planning. 
Despite scalp EEG’s many advantages end users struggle 
with its poor spatial resolution, selectivity and low signal-to-
noise ratio that are critically limiting the research discovery 
and diagnosis [1]–[3]. In particular, EEG’s poor spatial 
resolution is primarily due to (1) the blurring effects of the 
volume conductor with disc electrodes; and (2) EEG signals 
having reference electrode problems as idealized references 
are not available with EEG and interference on the reference 
electrode contaminates all other electrode signals [2]. The 
application of the surface Laplacian (the second spatial 
derivative of the potentials on the scalp surface) to EEG has 
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been shown to alleviate the blurring effects enhancing the 
spatial resolution and selectivity, and reduce the reference 
problem [4]–[6].  

Noninvasive concentric ring electrodes (CREs) can 
resolve the reference electrode problems since they act like 
closely spaced bipolar recordings [2]. Moreover, CREs are 
symmetrical alleviating electrode orientation problems [7]. 
They also act as spatial filters reducing the low spatial 
frequencies and increasing the spatial selectivity [7], [8]. 
Most importantly, tripolar CREs (TCREs; Fig. 1B) have been 
shown to estimate the surface Laplacian directly through the 
nine-point method, an extension of the five-point method 
(FPM) used for bipolar CREs, and significantly better than 
other electrode systems including bipolar and quasi-bipolar 
CRE configurations [9], [10]. Compared to EEG with 
conventional disc electrodes (Fig. 1A) Laplacian EEG via 
TCREs have been shown to have significantly better spatial 
selectivity (approximately 2.5 times higher), signal-to-noise 
ratio (approximately 3.7 times higher), and mutual 
information (approximately 12 times lower) [11]. Because of 
such unique capabilities TCREs have found numerous 
applications in a wide range of areas including brain–
computer interface [12], [13], seizure onset detection [14], 
[15], detection of high-frequency oscillations and seizure 
onset zones [16], etc. These EEG applications of TCREs 
suggest the potential of CRE technology as well as the need 
for further improvement of CRE design. 

In [17] we have shown that accuracy of Laplacian 
estimation can be improved with multipolar CREs. General 
approach to estimation of the Laplacian for an (n + 1)-polar 
electrode with n rings using the (4n + 1)-point method for n ≥ 
2 has been proposed. This approach allows cancellation of all 
the Taylor series truncation terms up to the order of 2n which 
has been shown to be the highest order achievable for a CRE 
with n rings [17]. Proposed approach was validated using 
finite element method (FEM) modeling. Multipolar 
concentric ring electrode configurations with n ranging from 
1 ring (bipolar electrode configuration) to 6 rings (septapolar 
electrode configuration) were compared and obtained results 
suggested statistical significance of the increase in Laplacian 
accuracy caused by increase in the number of rings n [17]. 

Figure 1.  Conventional disc electrode (A) and tripolar concentric ring 
electrode (B). 
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To the best of the authors’ knowledge, all the previous 
research on CREs was based on the assumption of constant 
inter-ring distances (distances between consecutive rings). 
This means that distances between the rings were not 
considered as a means of improving the accuracy of 
Laplacian estimation. This paper takes the next fundamental 
step toward further improving the Laplacian estimation 
accuracy by proposing novel variable inter-ring distances 
concentric ring electrodes. Laplacian estimates for linearly 
increasing inter-ring distances TCRE (n = 2) and quadripolar 
CRE (QCRE; n = 3) configurations are derived using a 
modified (4n + 1)-point method from [17] and directly 
compared to their constant inter-ring distances counterparts 
using coefficients of truncation terms from the Taylor series 
used in (4n + 1)-point method. Obtained results suggest that 
increasing inter-ring distances CRE configurations may offer 
more accurate Laplacian estimates compared to respective 
constant inter-ring distances CRE configurations. 

II. MATERIALS AND METHODS 

A. Notations and Preliminaries 
In [17] general (4n + 1)-point method for constant inter-

ring distances (n + 1)-polar CRE with n rings was proposed. 
It was derived using a regular plane square grid with all inter-
point distances equal to r presented in Fig. 2. 

It has been shown that for a case of multipolar CRE with 
n rings (n ≥ 2) we obtain a set of n FPM equations for 
Laplacian potential ∆v0, one for each ring with radii ranging 
from r (v0, vr,1, vr,2, vr,3, and vr,4 on Fig. 2) to nr (v0, vnr,1, vnr,2, 
vnr,3, and vnr,4 on Fig. 2) around the point with potential v0 
[17]: 

Figure 2.   Regular plane square grid with inter-point distances equal to r. 
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To estimate the Laplacian for this general case the n 
equations are combined in a way that cancels all the 
truncation terms up to the highest order that can be achieved 
for n rings (equal to 2n as shown in [17]) increasing the 
accuracy of the Laplacian estimate. In order to find such a 
combination we arrange the coefficients lk of the truncation 
terms 
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ranging in increments of 2 from 4 to 2n and ring radius 
multiplier l ranging from 1 to n into an n – 1 by n matrix A 
that is a function only of the number of the rings n:  
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A matrix equation of the form 0Ax =   is equivalent to a 
homogeneous system of linear equations where 0  is the (n – 
1)-dimensional zero vector and x  is the n-dimensional vector 
that allows the cancellation of all the truncation terms up to 
the order of 2n by setting the linear combination of n 
coefficients lk corresponding to all ring radii for each order k 
equal to 0 [17].  

B. Variable (Linearly Increasing) Inter-ring Distances CRE 
We consider the case of CRE configurations with variable 

inter-ring distances that increase or decrease linearly the 
further the concentric ring lies from the central disc. To 
modify the (4n + 1)-point method from [17] to the case of 
linearly increasing inter-ring distances, the distance between 
the central point with potential v0 and four points on the 
smallest concentric ring is set equal to r. The distance 
between the first and the second smallest concentric ring is 
set equal to 2r, etc. In this case the sum of all the inter-ring 
distances to the largest, n-th, outer ring can be obtained using 
the formula for the n-th term of the triangular number 
sequence that describes the sum of all points in a triangular 
grid where the first row contains a single point and each 
subsequent row contains one more point than the previous 
one to be equal to n(n + 1)/2 [18]. Therefore, modified matrix 
A of truncation term coefficients lk from (2) for linearly 
increasing inter-ring distances CRE is equal to: 
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C. Analysis of the Taylor Series Truncation Term 
Coefficients  
Variable inter-ring distances CREs have the same number 

of rings and, therefore, the same number and order of 
truncation terms in Laplacian estimates as their constant 
inter-ring distances counterparts. Therefore, constant and 
variable inter-ring distances CRE configurations can be 
directly compared by assessing the coefficients at the 
respective truncation terms that comprise the truncation error 
of the Laplacian estimation.  

Analyzing those coefficients will allow us to determine 
which electrode configuration allows minimizing the 
truncation error resulting in more accurate Laplacian 
estimate. Performing this kind of analysis for increasing and 
constant inter-ring distances TCREs and QCREs would allow 
assessing the potential of variable inter-ring distances CREs. 

First, we derive the coefficients of the truncation terms 
for TCRE and QCRE configurations with increasing and 
constant inter-ring distances as functions of the order of the 
truncation term, k, under the following conditions: the largest, 
outer ring radius equals to 6r and relative locations of 
concentric rings, with respect to the central disc, are as shown 
in Fig. 3. Same dimensions of all the different CRE 
configurations considered ensured direct comparability of 
results. 

For constant inter-ring distances TCREs and QCREs the 
coefficients used to combine the differences between the 
concentric ring potentials and the central disc potential into a 
Laplacian estimate can be derived using the approach 
proposed in [17] by finding the null space of matrix A from 
(2) for n = 2 and n = 3 respectively: (16, –1) for TCRE and 
(270, –27, 2) for QCRE configurations. Derivation of 
Laplacian estimate coefficients for increasing inter-ring 
distances TCREs and QCREs configurations was performed 
using the approach proposed in this paper by finding the null 
space of matrix A' from (3) for n = 2 and n = 3 respectively: 
(81, –1) for TCRE and (4374, –70, 1) for QCRE  
configurations. This approach cancels all the truncation terms 
up to the order of 2n which has been shown to be the highest 
order achievable for a CRE with n rings [17]. In the case of 
TCREs (n = 2) this corresponds to cancellation of the fourth 
order leaving truncation terms of orders 6 and higher. 
Assuming that our TCRE has two rings with radii αr and βr 
respectively such that β > α, for each ring we take the integral 
along the circle with the corresponding radius of the Taylor 
series in a manner identical to deriving (1) to obtain: 

Figure 3.  Relative locations of rings for constant (panel A) and increasing 
(panel B) inter-ring distances TCRE and QCRE configurations. 
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For constant inter-ring distances TCREs we combine 
equations (4) and (5) by multiplying (4) by 16, multiplying 
(15) by –1, and adding the two resulting products together 
solving the sum for the Laplacian ∆v0: 
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For increasing inter-ring distances TCREs equations (4) 
and (5) have to be combined with the coefficients 81 and –1 
respectively resulting in: 
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Now we can express the coefficients c(k) of truncation 
terms with the general form  
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of the truncation term order k. For constant inter-ring 
distances TCRE and α and β equal to 3 and 6 respectively 
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(Fig. 3A) we obtain ( )
2 2
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⋅ −
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even k ≥ 6. For increasing inter-ring distances TCRE and α 
and β equal to 2 and 6 respectively (Fig. 3B) we obtain 
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 for even k ≥ 6. 

The same steps can be taken to derive the truncation term 
coefficient functions for increasing and constant inter-ring 
distances QCREs (n = 3) cancelling the truncation terms up 
to the sixth order. For constant inter-ring distances QCRE 
coefficients (270, –27, 2) are used to combine potentials on 
three rings with radii 2r, 4r, and 6r (Fig. 3A) and the central 
disc resulting in the following for even k ≥ 8 
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For increasing inter-ring distances QCRE coefficients 
(4374, –70, 1) are used to combine potentials on three rings 
with radii r, 3r, and 6r (Fig. 3B) and the central disc resulting 
in the following for even k ≥ 8: 

( )
2 2 2

4 4374 1 70 3 1 6 4374 70 3 6( )
4374 1 70 3 1 6 945

k k k k k
QCRE
Ic k

⋅ − ⋅ + ⋅ − ⋅ +
= =

⋅ − ⋅ + ⋅
. 

The ratio of truncation term coefficient functions for 
constant inter-ring distances to increasing inter-ring distances 
TCRE configurations is the following for even k ≥ 6: 
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In a similar way, the ratio of truncation term coefficient 
functions for constant inter-ring distances to increasing inter-
ring distances QCRE configurations is the following for even 
k ≥ 8: 
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III. RESULTS 

Plots of both functions from (8) and (9) are presented in 
Fig. 4 for even truncation term order k ranging from 6 to 30 
and from 8 to 30 respectively.  

While the signs of the truncation term coefficients are 
consistent for both constant and increasing inter-ring 
distances CRE configurations (all negative for TCREs and all 
positive for QCREs), Fig. 4 serves a three-fold purpose. First, 
it shows that absolute values of coefficients are larger for 
constant inter-ring distances CRE configurations since ratios 
of truncation term coefficients for constant inter-ring 
distances CRE configurations over corresponding increasing 
inter-ring distances CRE configurations are all larger than 1. 
Therefore, truncation errors for constant inter-ring distances 
CRE configurations are greater than the ones for 
corresponding increasing inter-ring distances CRE 
configurations which results in more accurate Laplacian 
estimates for increasing inter-ring distances CRE 
configurations. Second, Fig. 4 shows that the ratios of 
truncation term coefficients are higher for QCREs than for 
TCREs.  

Figure 4.   Ratios of constant to increasing inter-ring distances truncation 
term coefficients as functions of the truncation term order. 

Therefore, the improvement in Laplacian accuracy is likely to 
become more significant with the increase in the number of 
rings. Third, Fig. 4 shows that all the coefficient ratios 
increase with the increase of the truncation term order but 
according to [19] for Taylor series "higher-order terms 
usually contribute negligibly to the final sum and can be 
justifiably discarded." Therefore, we will consider the 
coefficient ratios for the lowest nonzero truncation term for 
TCRE (sixth order) and QCRE (eighth order) configurations 
equal to 2.25 and 7.11 respectively (dotted lines in Fig. 4) as 
the ones that contribute the most to the truncation error. If we 
take weighted arithmetic means of all the truncation term 
coefficient ratios from Fig. 4 for truncation term orders up to 
30 with weights derived from an exponential decay model 
with unit original amount and decay rate equal to –1 to 
account for decreasing contribution of higher order terms we 
obtain weighted average ratios of 2.37 and 7.83 respectively. 

IV. DISCUSSION 

The contribution of this paper is twofold. First, novel 
variable inter-ring distances CREs are proposed as opposed 
to all the previous research on CREs that, to the best of the 
authors’ knowledge, was based on the assumption of constant 
inter-ring distances. Laplacian estimates for variable inter-
ring distances CREs are derived using a modified (4n + 1)-
point method from [17] for any given number of rings n. 
Second, accuracy of Laplacian estimates corresponding to 
constant and linearly increasing inter-ring distances TCREs 
and QCREs is assessed analytically with obtained results 
suggesting that for TCREs the truncation error may be 
decreased more than two-fold (2.25) while for QCREs more 
than seven-fold (7.11) decrease is expected. 

Analytical results obtained in this study are based on our 
hypothesis that the ratios of constant inter-ring distances 
truncation term coefficient functions over the increasing 
inter-ring distances truncation term coefficient functions for 
TCRE and QCRE configuration will be comparable to the 
respective ratios of Laplacian estimation error obtained using 
FEM modelling or prototypes of increasing inter-ring 
distances CREs on real life data, both phantom and from 
human subjects. This hypothesis stems from the fact that for 
Laplacian estimates obtained using the (4n + 1)-point method 
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truncation terms constitute the primary component of the 
estimation error.  

The type of truncation term coefficient analysis that was 
used in this study would not have been feasible in our 
previous works. For example, in [17], where multipolar CRE 
configurations ranging from bipolar (n = 1) to septapolar (n = 
6) were compared using FEM modelling, Laplacian estimates 
for different CRE configurations had different numbers of 
truncation terms (one truncation term less for each additional 
concentric ring causing an increase in Laplacian estimation 
accuracy) which made analytical comparison of truncation 
term coefficients for different CRE configurations infeasible. 
In this study proposed variable inter-ring distances CREs 
have the same numbers of rings and, therefore, the same 
numbers (and orders) of truncation terms in respective 
Laplacian estimates as their constant inter-ring distances 
counterparts which allowed us to quantify the expected 
improvement in Laplacian estimation accuracy analytically. 

Further investigation is needed to confirm the obtained 
results. The plan for future work includes several directions 
and is based on limitations of the current study. The main 
limitation of the proposed (4n + 1)-point method is that the 
width of the concentric rings and the diameter of the central 
disc are not taken into account and therefore cannot be 
optimized. To pursue our ultimate goal of being able to 
determine sub optimal CRE designs for specific applications 
these two parameters need to be included into future 
modifications of the (4n + 1)-point method and 
corresponding FEM models along with the currently included 
number of rings, size of the electrode, and, as proposed in 
this study, inter-ring distances. Another limitation is that 
while this study proposes novel variable inter-ring distances 
CREs, only linearly increasing distances are considered. The 
solution to the general inter-ring distances optimization 
problem is likely to result in nonlinear relationship which is 
why solving this general problem is the second direction of 
the future work. Third direction is to create prototypes of 
variable inter-ring distances CREs with 2 and more rings and 
test them on real life data, both phantom and from human 
subjects. This direction is critical since obtained results 
suggest that variable inter-ring distances CREs may result in 
more accurate Laplacian estimates. This raises the question 
of how small can the distances between concentric rings get 
before partial shorting due to salt bridges becomes significant 
enough to affect Laplacian estimation. Moreover, these 
prototypes would allow investigating the translation of ratios 
of truncation term coefficients assessed in this study into 
improvement of spatial selectivity, signal-to-noise ratio, 
source mutual information, etc. in a similar was to how it was 
investigated for Laplacian EEG via TCREs compared to EEG 
with conventional disc electrodes [11].  

ACKNOWLEDGMENT 
The authors thank Dr. Chengde Wang and Colin M. Lee 

from Diné College as well as Dr. Ernst Kussul from the 
National Autonomous University of Mexico, Mexico City, 
Mexico for the constructive discussions and helpful 
comments. We also thank Dr. Weizhong Dai from Louisiana 
Tech University, Ruston, LA for the early discussions on the 
concepts involved in this research. 

REFERENCES 
[1] J. E. Desmedt, V. Chalklin, and C. Tomberg, “Emulation of 

somatosensory evoked potential (SEP) components with the 3-shell 
head model and the problem of ‘ghost potential fields’ when using an 
average reference in brain mapping,” Electroencephalogr. Clin. 
Neurophysiol. Potentials Sect., vol. 77, no. 4, pp. 243–258, Jul. 1990. 

[2] P. L. Nunez, R. B. Silberstein, P. J. Cadusch, R. S. Wijesinghe, A. F. 
Westdorp, and R. Srinivasan, “A theoretical and experimental study 
of high resolution EEG based on surface Laplacians and cortical 
imaging,” Electroencephalogr. Clin. Neurophysiol., vol. 90, no. 1, pp. 
40–57, Jan. 1994. 

[3] G. Lantz, R. Grave de Peralta, L. Spinelli, M. Seeck, and C. M. 
Michel, “Epileptic source localization with high density EEG: how 
many electrodes are needed?,” Clin. Neurophysiol., vol. 114, no. 1, 
pp. 63–69, Jan. 2003. 

[4] R. Srinivasan, “Methods to Improve the Spatial Resolution of EEG,” 
Int. J. Bioelectromagn., vol. 1, no. 1, pp. 102–111, 1999. 

[5] B. He, “High-resolution source imaging of brain electrical activity,” 
IEEE Eng. Med. Biol. Mag., vol. 17, no. 5, pp. 123–129, Sep. 1998. 

[6] B. He, J. Lian, and G. Li, “High-resolution EEG: a new realistic 
geometry spline Laplacian estimation technique,” Clin. 
Neurophysiol., vol. 112, no. 5, pp. 845–852, May 2001. 

[7] D. Farina and C. Cescon, “Concentric-ring electrode systems for 
noninvasive detection of single motor unit activity,” IEEE Trans. 
Biomed. Eng., vol. 48, no. 11, pp. 1326–1334, Nov. 2001. 

[8] C. Disselhorst-Klug, J. Silny, and G. Rau, “Improvement of spatial 
resolution in surface-EMG: a theoretical and experimental 
comparison of different spatial filters,” IEEE Trans. Biomed. Eng., 
vol. 44, no. 7, pp. 567–574, Jul. 1997. 

[9] G. Besio, K. Koka, R. Aakula, and W. Dai, “Tri-polar concentric ring 
electrode development for Laplacian electroencephalography,” IEEE 
Trans. Biomed. Eng., vol. 53, no. 5, pp. 926–933, May 2006. 

[10] W. Besio, R. Aakula, K. Koka, and W. Dai, “Development of a Tri-
polar Concentric Ring Electrode for Acquiring Accurate Laplacian 
Body Surface Potentials,” Ann. Biomed. Eng., vol. 34, no. 3, pp. 426–
435, Feb. 2006. 

[11] K. Koka and W. G. Besio, “Improvement of spatial selectivity and 
decrease of mutual information of tri-polar concentric ring 
electrodes,” J. Neurosci. Methods, vol. 165, no. 2, pp. 216–222, Sep. 
2007. 

[12] W. G. Besio, H. Cao, and P. Zhou, “Application of Tripolar 
Concentric Electrodes and Prefeature Selection Algorithm for Brain-
Computer Interface,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 16, 
no. 2, pp. 191–194, Apr. 2008. 

[13] Y. Boudria, A. Feltane, and W. Besio, “Significant improvement in 
one-dimensional cursor control using Laplacian 
electroencephalography over electroencephalography,” J. Neural 
Eng., vol. 11, no. 3, p. 035014, 2014. 

[14] O. Makeyev, X. Liu, H. Luna-Munguia, G. Rogel-Salazar, S. Mucio-
Ramirez, Y. Liu, Y. L. Sun, S. M. Kay, and W. G. Besio, “Toward a 
Noninvasive Automatic Seizure Control System in Rats With 
Transcranial Focal Stimulations via Tripolar Concentric Ring 
Electrodes,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 20, no. 4, 
pp. 422–431, Jul. 2012. 

[15] A. Feltane, G. F. Boudreaux-Bartels, and W. Besio, “Automatic 
Seizure Detection in Rats Using Laplacian EEG and Verification with 
Human Seizure Signals,” Ann. Biomed. Eng., vol. 41, no. 3, pp. 645–
654, Oct. 2012. 

[16] W. G. Besio, I. E. Martinez-Juarez, O. Makeyev, J. N. Gaitanis, A. S. 
Blum, R. S. Fisher, and A. V. Medvedev, “High-Frequency 
Oscillations Recorded on the Scalp of Patients With Epilepsy Using 
Tripolar Concentric Ring Electrodes,” IEEE J. Transl. Eng. Health 
Med., vol. 2, pp. 1–11, 2014. 

[17] O. Makeyev, Q. Ding, and W. G. Besio, “Improving the accuracy of 
Laplacian estimation with novel multipolar concentric ring 
electrodes,” Measurement, vol. 80, pp. 44–52, Feb. 2016. 

[18] E. W. Weisstein, “Triangular Number.” [Online]. Available: 
http://mathworld.wolfram.com/TriangularNumber.html. [Accessed: 
11-Feb-2016]. 

[19] M. R. King and N. A. Mody, Numerical and statistical methods for 
bioengineering: applications in MATLAB. Cambridge University 
Press, 2010. 

 

2062


	MAIN MENU
	Help
	Search
	Print
	Author Index
	Program in Chronological Order


 
 
    
   HistoryItem_V1
   TrimAndShift
        
     Range: From page 1 to page 1
     Trim: none
     Shift: move up by 1.80 points
     Normalise (advanced option): 'original'
      

        
     32
     1
     0
     No
     675
     320
     Fixed
     Up
     1.8000
     0.0000
            
                
         Both
         1
         SubDoc
         1
              

      
       PDDoc
          

     None
     0.0000
     Top
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.9
     Quite Imposing Plus 2
     1
      

        
     5
     0
     1
      

   1
  

 HistoryList_V1
 qi2base



