
  

  

Abstract— As epilepsy affects approximately one percent of 
the world population, electrical stimulation of the brain has 
recently shown potential for additive seizure control therapy. 
Previously, we applied noninvasive transcranial focal 
stimulation via tripolar concentric ring electrodes on the scalp 
of rats after inducing seizures with pentylenetetrazole. We 
developed a system to detect seizures and automatically trigger 
the stimulation and evaluated the system on the electrographic 
activity from rats. In this preliminary study we propose and 
validate a novel seizure onset detection algorithm based on 
exponentially embedded family. Unlike the previously proposed 
approach it integrates the data from multiple electrodes 
allowing an improvement of the detector performance. 

I. INTRODUCTION 

Epilepsy is a neurological disorder that affects 
approximately one percent of the world population [1]. 
Recently, electrical stimulation of the brain has shown 
promise in reducing seizure frequency. Different forms of 
noninvasive electrical stimulation including transcranial 
magnetic stimulation [2], [3] and transcranial direct current 
stimulation [4] have received increasing attention compared 
to implantable techniques. Yet, as previously concluded in a 
review of various brain stimulation techniques, the best 
structures to stimulate and the most effective stimuli to use 
are still unknown [5].  

Concentric ring electrodes (CREs) have unique 
capabilities. They perform the second spatial derivative, the 
Laplacian, on the surface potentials. Previously, we have 
shown that tEEG, Laplacian electroencephalography (EEG) 
with the tripolar CRE (TCRE) configuration, is superior to 
conventional EEG with disc electrodes because tEEG has 
significantly better spatial selectivity, signal-to-noise ratio, 
localization, approximation of the analytical Laplacian, and 
mutual information [6]-[8].  

Unlike electrical stimulation via conventional disc 
electrodes applied across the head, transcranial electrical 
stimulation via the CRE has a much more uniform current 
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density [9] and focuses the stimulation directly below the 
electrodes. In our previous works, we have achieved 
promising results using transcranial focal stimulation (TFS) 
via TCRE to attenuate acute seizures in animal models 
induced by pilocarpine [10], penicillin [11], and 
pentylenetetrazole (PTZ) [12]-[14]. For pilocarpine-induced 
status epilepticus TFS attenuated electrographic seizure 
activity and halted the progression of behavioral seizures 
significantly extending life and enhancing the survival of rats 
[10]. For severe penicillin induced myoclonic jerks (MJs) 
TFS significantly decreased MJs in number and duration 
[11]. Finally, for the PTZ-induced model, a significant 
increase in synchrony within the beta-gamma frequency 
bands during seizures was demonstrated as well as the 
potential of TFS to significantly reduce this synchrony [12]. 
We also found that TFS caused reductions of both power of 
electrographic seizure activity [13] and duration of 
behavioral myoclonic activity [14]. For all these models TFS 
was triggered manually immediately after the first MJ was 
observed. 

As the next fundamental step, we demonstrated feasibility 
of an automatic noninvasive seizure control system in rats 
with PTZ-induced seizures through single and multiple TFS 
administrations [15], [16]. The TFS was automatically 
triggered by a real-time electrographic seizure activity 
detector based on a disjunctive combination of cumulative 
sum algorithm (CUSUM) and generalized likelihood ratio 
test (GLRT).  

The detection methodologies proposed in [15]-[17] (as 
well as methods for this paper) are based on detecting the 
changes in signal power since in our previous works we 
found a significant increase in tEEG power corresponding to 
seizure onset [13], [17]. An average seizure onset detection 
accuracy of 76.14% was obtained for the test set (n = 13) 
[16]. Detection of electrographic seizure activity was 
accomplished in advance of the early behavioral seizure 
activity in 76.92% of the rats [16]. Automatically triggered 
TFS significantly (p = 0.001) reduced the electrographic 
seizure activity power in the once stimulated group compared 
to controls in 70% of the cases [16].  

Unlike [15]-[17] where data from a single TCRE was 
used for seizure onset detection, in this study we integrate 
data from three TCREs using the exponentially embedded 
family (EEF) approach that has been recently proposed for 
multi-sensor (or multi-channel) detection [18], [19]. Applied 
to hypothesis testing EEF has been shown to have superior 
performance compared to existing methods for cases where 
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the sensor outputs are not independent [18], [19]. Such is our 
case since sensor measurements could be correlated due to 
the common source and the relative sensor locations. The 
proposed seizure onset detection approach has been validated 
on the subset of the dataset used in [16] to allow direct 
comparison of performance with our previous disclosed 
methodology.  

II. METHODS 

A. Dataset 
A short summary of the aspects of the original dataset 

collected in [16] that are the most relevant to the current 
study is presented below.  

24 h before the induction of seizures adult male Sprague-
Dawley rats were anesthetized, their scalps were shaved, and 
prepared with abrasive gel. Three custom-designed TCREs 
[6] were placed on the scalp with conductive paste and 
adhered with dental acrylic cement. One TCRE (1.0 cm dia.), 
used to record from and stimulate, was centered on the top of 
the head. Two other recording TCREs (6 mm dia.) were 
placed bilaterally behind the eyes, but in front of the ears. An 
isolated ground electrode was attached on the top of the neck 
behind the ears. The real-time CUSUM/GLRT based seizure 
detection was performed automatically using individual 
models i.e. detection was trained on baseline electrographic 
activity for each rat. All other detector parameters were 
selected from the training group of rats (n = 3) using grid 
search. Detection accuracy was calculated for the test group 
(n = 13) of which five rats were used as controls, five 
received a single dose of TFS (50 mA, 200 µs, 300 Hz, 2 m, 
biphasic, charge-balanced pulses) and three received two 
doses of TFS. Animals were divided into groups based on 
skin-to-electrode impedance. Lower impedances for the two 
TFS treated groups ensured effectiveness of TFS. Since TFS 
was applied between the outer ring and the central disc of the 
1.0 cm TCRE the rat was given TFS if the impedance for the 
outer ring and the central disc to the ground electrode were 
both less than 10 KΩ. Otherwise, if this impedance was 
between 10 KΩ and 25 KΩ the animal was put into the 
control group (n = 5).  

To validate the seizure detection data were collected for 
each rat in the following way: first, 5 min of baseline tEEG 
were recorded to train the seizure detector. Next, the seizure 
detector was activated for 5 min of sham seizure activity 
(baseline) recording. Finally, seizures were induced with PTZ 
(55 mg/kg i.p.) and tEEG recording continued for another 15 
min with one and two TFS dose groups receiving 
automatically triggered TFS. For tEEG derivation the EEG 
signals were preamplified (gain 100 and 0.3 Hz high pass 
filter) with a custom built preamplifier, amplified (gain 1000 
and band pass of 1.0–100 Hz with the 60 Hz notch filter), and 
digitized (16 bits, 256 S/s). Next, two differential EEG 
signals from each TCRE were combined to give Laplacian 
derivation of the signal as reported previously by Besio [6]. 
Detection accuracy was calculated for periods of sham and 
real seizure until the first observed MJ (first clear behavioral 
seizure manifestation) with an exception of a 30 s handling 
period corresponding to the PTZ injection. Sensitivity, 

specificity and overall accuracy were calculated for time 
windows of 5 s.  

In [16] for each rat data recorded from one TCRE was 
selected for real-time seizure detection based on skin-to-
electrode impedance and visual inspection of data. In this 
study we combine the data from all three TCREs using EEF 
for detection of a change in power as described below. 

B.  EEF Problem Statement 
This EEF derivation is for three TCREs but it can be 

easily extended for any number of electrodes. Let 

1 1 2 2 3 3{ , },{ , },{ , }b t b t b tx x x x x x  be the de-meaned tEEG data 
from three TCREs respectively, where the superscript “b” 
represents the baseline data of length Nb and “t” represents 
the testing data of length Nt. In other words, 1 2 3, ,b b bx x x  are 

the training data and 1 2 3, ,t t tx x x  are the validation data for 
the detector. We assume that all data follow Gaussian 
distributions: 2
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Under the null hypothesis the variances of baseline and 
testing segments for each TCRE are equal meaning that there 
is no significant change in power (equal to variance for de-
meaned segments). The alternative being a significant rise in 
power is detected meaning detection of seizure onset. 

C. EEF Implementation 

We also assume that 2 2 2
1, 2, 3,, ,b b bσ σ σ  can be estimated 

accurately, which is possible if we have sufficient number of 

samples: ( )22
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for i = 1,2,3. Now we can 

re-write the hypothesis testing problem in a different way: 
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where 2 2 2

1, 2, 3,, ,b b bσ σ σ  are assumed to be known and 
2 2 2
1, 2, 3,, ,t t tσ σ σ  are the unknown variances such that 
2 2
1, 1,t bσ σ> , 2 2

2, 2,t bσ σ> , 2 2
3, 3,t bσ σ> . Since under H0 there 

is no seizure, we assume that 1 2 3, ,t t tx x x  are independent. 
Therefore, we have for p being the probability density 
function (PDF): 

1 2 3 0 1 0 2 0 3 0( , , ; ) ( ; ) ( ; ) ( ; )t t t t t tp H p H p H p H=x x x x x x  

As shown in [18] the EEF can be expressed as: 
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is the normalizing factor to guarantee a valid PDF. Once we 
find 
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parameterize the EEF as 
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equivalently  find the maximum over 1 2 3, ,θ θ θ . It can be 
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Finally, it can be shown 

that the EEF decides H1 if: 
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where T(x) is the test statistic and the threshold γ is selected 
for a given false alarm rate PFA. It can be shown that T(x) 
asymptotically follows chi-squared distribution with three 
degrees of freedom allowing one to set γ accordingly. 

III. RESULTS 

For this preliminary validation of EEF we used a subset of 
the dataset from [16] corresponding to the control group (n = 
5). The control data was selected because it does not contain 
automatically triggered periods of TFS that have to be 
excluded from accuracy evaluation. This evaluation followed 
the guidelines of [16] including size of testing data window 
Nt equal to 5 s and the three-of-three smoothing algorithm 
(for three consecutive detections the third one was marked as 
seizure onset). All the available baseline data was used for 

EEF training, i.e. Nb was equal to 5 min. Out of 3 rats used in 
[16] for detector training only two were controls and as such 
were used to train the EEF. No results are reported for the 
training set (n = 2). As in [16] training was performed using 
grid search maximizing the overall accuracy for a range of 
PFA values. Suboptimal PFA equal to 10-6 was obtained in 
training and used for validation. 

The results obtained on the validation set (n = 5) are 
presented in Table 1. It can be seen that obtained 
CUSUM/GLRT results are comparable to the ones obtained 
for the full dataset (n = 13) in [16]. EEF outperforms 
CUSUM/GLRT with more than twice the sensitivity and 
comparable specificity, higher percentage of rats with seizure 
onset detected prior to MJ, and faster seizure onset detection. 
At the same time the disjunctive combination of 
CUSUM/GLRT and EEF with detections from either detector 
combined using logical OR fusion did not show a significant 
improvement over EEF. This may suggest that EEF showed 
near optimal performance for this particular data. Individual 
test statistics and detections for periods of sham seizure (5 
min) and seizure (before the first MJ) are presented in Fig. 1. 
Rat A never developed a MJ even though there was 

TABLE I 
PERFORMANCE METRICS FOR CUSUM/GLRT AND EEF DETECTORS AND 

THEIR DISJUNCTIVE COMBINATION. 

Average 

Detector Overall 
accu- 
racy 
(%) 

Sensi- 
tivity 
(%) 

Speci- 
ficity 
(%) 

Rats 
with 

seizure 
onset 

detected 
prior to 

the 
first MJ 

(%) 

Mean 
time 
from 
PTZ 

injection 
to 

seizure 
onset 

detection 
(s) 

CUSUM/ 
GLRT 79.8 29.1 98.34 80 26.6 

EEF 81.73 69.35 95.98 100 18.2 
Disjunctive 
combination 82.17 72.02 94.32 100 17 

Fig. 1. Individual test statistics and detections for sham seizure (5 min) and 
seizure before the first MJ (n = 5; letters A-E denote individual rats). 
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electrographic seizure activity present so all the available 
data (15 min) after PTZ injection was used for accuracy 
assessment (time scale is different for this rat in Fig. 1). For 
rat E seizure onset was detected before the first MJ by EEF 
but not by CUSUM/GLRT. 

IV. DISCUSSION 

We believe that the improvement achieved in seizure onset 
detector performance using EEF is primarily due to the fact 
that tEEG via TCRE decreases mutual information increasing 
the level of independency between electrodes compared to 
EEG via conventional disc electrodes [8]. Due to the 
significantly lowered mutual information we believe that 
multiple TCRE sensors collect more independent local data. 
Therefore, integration of multiple TCREs increases the total 
information and improves the seizure detection. 

Furthermore, selection of EEF for detection was crucial 
since it combines the information from all the TCREs using 
an exponential family. The weights for each channel are 
estimated from the samples. This procedure makes the EEF a 
robust method. For example, in our case of performing the 
validation on control data no selection criteria was used to 
assure good quality of signal for all three TCREs since only 
data from a single TCRE was previously used. As a result 
some of the channels corresponding to TCRE elements had 
high (>25 KΩ) or intermittent impedance resulting in low 
signal to noise ratio data. Moreover, a couple of the channels 
were open due to loss of connector pins resulting in channels 
consisting of just noise. As was shown in EEF 
implementation (Section 2C) channels containing mostly 
noise and providing no useful information resulting in low 
power receive weights equal to zero (or close to zero in 
practice), i.e. for EEF the contribution of a channel is 
proportional to the amount of useful information it contains. 
Finally, EEF is also a great simplification over a previously 
used methodology based on a disjunctive combination of 
CUSUM and GLRT. 

V. CONCLUSION 

We believe that the preliminary results obtained in this 
study suggest the potential of the proposed approach and 
further investigation is needed to confirm it. Quality of the 
data that was used was not controlled for all the channels or 
TCREs and even the few controlled channels had poor 
impedances (10-25 KΩ). Therefore, it is likely to represent 
the worst case scenario and the lower bound of the detector 
performance. Due to its robustness to such low quality data 
and improved performance EEF holds great promise for 
sensor integration in applications not limited to seizure onset 
detection in rats and, potentially, humans.   
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