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a  b  s  t  r  a  c  t

This  paper  presents  a novel  fully  automatic  food  intake  detection  methodology,  an  important  step  toward
objective  monitoring  of  ingestive  behavior.  The  aim  of  such  monitoring  is to improve  our understanding  of
eating behaviors  associated  with  obesity  and  eating  disorders.  The  proposed  methodology  consists  of  two
stages.  First,  acoustic  detection  of  swallowing  instances  based  on mel-scale  Fourier  spectrum  features  and
classification  using  support  vector  machines  is  performed.  Principal  component  analysis  and  a  smoothing
algorithm  are  used  to improve  swallowing  detection  accuracy.  Second,  the  frequency  of  swallowing  is
used as a predictor  for detection  of  food  intake  episodes.  The  proposed  methodology  was  tested  on data
collected  from  12  subjects  with  various  degrees  of  adiposity.  Average  accuracies  of  >80%  and  >75%  were
wallowing
eglutition
earable sensors

besity

obtained for  intra-subject  and  inter-subject  models  correspondingly  with  a temporal  resolution  of 30  s.
Results  obtained  on  44.1  h of  data  with  a total  of 7305  swallows  show  that  detection  accuracies  are
comparable  for  obese  and  lean  subjects.  They  also  suggest  feasibility  of  food  intake  detection  based  on
swallowing  sounds  and  potential  of  the  proposed  methodology  for automatic  monitoring  of  ingestive
behavior.  Based  on  a wearable  non-invasive  acoustic  sensor  the  proposed  methodology  may  potentially

ditio
be  used  in free-living  con

. Introduction

This paper presents a novel fully automatic food intake detec-
ion methodology based on a wearable non-invasive swallowing
ensor. Such methodology can be helpful in characterization of
ngestive behaviors associated with a variety of eating disorders
nd for development of clinical interventions. According to World
ealth Organization, 1.5 billion adults, 20 and older, were over-
eight worldwide in 2008 [18]. Of these over 200 million men  and
early 300 million women were obese and monitoring of ingestive
ehavior (MIB) could potentially be used in active weight con-
rol programs providing the objective feedback needed for diet

anagement [2,15].  The objectivity of MIB  feedback is crucial as
nhealthy and extreme weight-control were shown to predict out-
omes related to obesity and eating disorders [10].
Most currently used self-reporting techniques demonstrate
idespread underestimation of food intake [7].  Because of bias and

mprecision, self-reported food intake should be interpreted with
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caution unless independent methods of assessing its validity are
included in the experimental design [17]. Replacing paper-based
reports with manually operated electronic devices to simplify
tedious and error-prone logging did not improve the validity of
self-reporting [19]. A potential solution is to replace or augment
manual self-reporting with objective automatic sensor based mon-
itoring where eating behavior is estimated without the individual’s
active participation. Such automatic sensor based monitoring has
the potential to improve reporting accuracy.

Characterization of food intake behavior includes: detection of
periods of food intake, differentiation of solid foods from liquids,
recognition of food type, prediction of the mass of ingested food
and evaluation of caloric intake [15]. In this paper we concentrate
on detection of periods of food intake as the next fundamental
step toward our long-term objective of creating an automatic, non-
invasive and wearable MIB  device suitable for use in free-living con-
ditions [8,9,13–16].  Toward this objective we have already devel-
oped a sensor system for non-invasive monitoring of chewing and
swallowing, validated its reliability based on manual scores [13,14],
established a methodology for automatic detection of swallowing
instances using acoustical signals [16], and developed methodolo-
gies for detection and characterization of food intake [8,15] as well

as automatic identification of the number of food items in a meal [9]
based on manual scores of chewing and swallowing. This paper now
incorporates and expands our previous work concluding it with a
demonstration of integration and validation of a fully automatic
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Fig. 1. Scheme of the two-sta

ood intake detection methodology. The proposed methodology
onsists of two  stages: first, acoustic detection of swallowing
nstances based on mel-scale Fourier spectrum features, classifica-
ion using support vector machines, principal component analysis
PCA) and a smoothing algorithm. Second, detection of periods
f food intake based on frequency of swallowing. Scheme of the
roposed methodology is presented in Fig. 1. To the best of our
nowledge this is the first attempt of fully automatic detection of
ood intake based on swallowing data from wearable non-invasive
ensors. A review of previous attempts to detect food intake such as
ntake gestures based approach proposed by Junker et al. in [6] and
hewing based approach proposed by Nishimura and Kuroda in [11]
s presented below. It is followed by a summary of contributions of
his paper showing how it builds up on and extends the finding
f our previous works integrating them into automatic food intake
etection methodology. An extensive review of existing method-
logies for automatic detection of swallowing instances and
omparison of our methodology to related work in this area is out
f scope of this paper and can be found in our previous work [16].

. Related work

Three categories of non-invasive wearable sensors have been
roposed as basis for creation of automatic food intake detection
ethodologies: intake gesture sensors [6],  chewing sound sensors

11] and swallowing sensors. Activities that correspond to these
ensor categories represent a temporal description of food con-
umption and thus can be used to identify periods of food intake.

Intake gestures are intentional arms and trunk movements
elated to food intake. In general, the task of gesture detection is dif-
cult because relevant gestures occur sporadically in a continuous
tream of data while often being embedded into other, partly arbi-
rary movements that are difficult to model due to their complexity
nd unpredictability [6].  An approach for intake gesture detec-
ion was proposed in [6] based on data from five inertial sensors
ttached to wrists (2), upper arms (2) and upper torso. This two-
tage approach combines natural partitioning pre-selection with
idden Markov Models classification. This approach was  tested on

requently used human feeding movements of both arms and the
runk including: using fork and knife for intake of lasagna, using
poon for intake of cereals or soup, drinking from a cup, and intake
f bread or chocolate bar using one hand only. The data was  col-
ected from four subjects; two sessions were performed for each
ubject on different days. A total of 4.7 h of data was collected with
4.7% of the data containing intake gestures. Average recall of 0.78
nd average precision of 0.77 were obtained for subject-specific
ntra-subject prediction model. No results for non-personalized
nter-subject model were reported.

The task of food intake detection based on chewing is virtu-
lly identical to the task of detection of chewing instances since
he chewing sequence represents the solid food intake cycle. The
hewing sequence consists of cyclic openings and closings of the
aw and arbitrary tongue movements. An approach for automatic

etection of chewing instances was proposed in [11]. A wireless

n-ear microphone is used to capture sound emissions generated
y chewing and transmitted by bone conduction to the ear canal.

 two-staged chewing detection algorithm first detects chew-like
omatic food intake detection.

signals by applying the number of zero-crossings threshold to log
energy regression coefficients. Then chewing sound verification is
performed based on similarity of signals detected at the first stage
to the chewing sound models derived from the training data. The
authors report high average chewing detection accuracy of 98.7%
for five food categories including chips, salad, rice, wafers and
banana. However, limited details about the validation methods are
provided including only the average number of test chews (516)
and the number of training chews (100) per food category. It is not
clear how many human subjects participated in the study, whether
intra- or inter-subject model results are reported, how the data was
divided into training and validation sets, what kind of validation
technique was  used, etc.

Detection of food intake based in swallowing differs from detec-
tion based on chewing since, unlike chewing, swallowing occurs
sporadically and unconsciously throughout the day. Therefore,
automatic detection of swallowing instances is only the first step
toward food intake detection. Detected swallows need to be further
classified as either spontaneous or food intake swallows. Our work
on creation of automatic food intake detection based on swallowing
started with the development of a non-invasive multi-modal mon-
itoring system including a wearable acoustic swallowing sensor –
a throat microphone located over the laryngopharynx [13,14]. This
monitoring system comprised of hardware, software and a proto-
col for manual scoring of the collected data was  used in a human
study measuring chewing and swallowing in 21 subjects during
food intake and resting periods. Next, in [15] we developed and
validated methods for detection and characterization of food intake
based on manual swallowing scores. In particular, we showed that
the instantaneous swallowing frequency could serve as a predictor
for accurate detection of food intake with an average accuracy of
87% for 30 s time windows. We also developed and validated meth-
ods for automatic detection of swallowing instances with acoustical
sensors [16] yielding 84.7% average detection accuracy of swallow-
ing events for intra-visit individual model. These results suggest the
potential of using swallowing frequency for automatic detection of
food intake.

However, two crucial issues remain unresolved. First, method-
ology of automatic swallowing detection was  previously validated
on intra-visit individual model only, i.e. training and validation of
the algorithm were performed on different segments of the same
recording rather than on separate recordings from the same or
different human subjects. Such intra-visit model cannot be imple-
mented in a MIB  device as constant real-time re-training is not
feasible in free-living conditions due to the absence of a gold
standard manual score. Therefore, further validation is needed for
intra- and inter-subject models which could be preprogrammed
and implemented in such a device directly. Second, the food intake
detection methodology was previously validated on gold standard
manual scores only. Validation on automatically produced swal-
lowing scores is needed to evaluate how sensitive the food intake
detection algorithm is to errors in swallowing detection. The first
contribution of this paper is that answers both of the aforemen-

tioned questions presenting a first fully automatic food intake
detection methodology based on an acoustic swallowing sensor
and validating it for intra- and inter-subject models on a database
collected from 12 subjects during food intake and resting periods.



 Proce

T
s
a

3

3

p
d
a
c

v
p
(
w
c
w
r
p
1
m
s
o
s
b
p
a
t
r
T
s
f
i
o
t
o
b
m
C
y
f
fi
r
t
r
t
t
o
b
T
r
v
i
r
u
m
o
I
l
i
t
t

O. Makeyev et al. / Biomedical Signal

he second contribution of this paper is utilization of PCA and a
moothing algorithm to improve automatic swallowing detection
ccuracy for intra- and inter-subject models.

. Methods

.1. Human study

The automatic food intake detection methodology used for this
aper was validated on a dataset that is a subset of the data collected
uring the human study reported in [13]. A short summary of the
spects of the original dataset that are the most relevant to the
urrent study is presented below.

The original subject population included 21 generally healthy
olunteers, 12 males and 9 females, with different degrees of adi-
osity. Thirty eight percent of human subjects had body mass index
BMI) greater than 30 (obese). Institutional Review Board approval
as obtained for the study. Subjects read and signed the informed

onsent form. No subjects had dental problems that would interfere
ith normal food intake. Each subject participated in four sepa-

ate visits scheduled for different days. Each visit consisted of three
arts: (1) a 20-min resting period (10 min  of silent inactivity and
0 min  of talking where the subject was asked to read aloud), (2) a
eal period of unlimited time to eat the meal of a fixed size, (3) a

econd 20-min resting period (10 min  of silent inactivity and 10 min
f talking). The following food items were included in the meal: a
lice of cheese pizza, a can of 1% fat yogurt, an apple, and a peanut
utter sandwich. The foods were selected to represent different
hysical properties of the food such as crispiness, softness/hardness
nd tackiness. The variability in physical properties of food ensured
hat the proposed methodology was tested on a sample that is rep-
esentative of the variability in the properties of everyday food.
he provided drink was clear water. All food items were to be con-
umed unmixed and completely. Water was consumed separately
rom food. Subjects ate in silence during half of the meals and were
nvolved in a dialogue during the other half to evaluate the impact
f a meal-time conversation on the accuracy of swallowing detec-
ion. Additionally, a mix  of background noise was used during half
f the visits to simulate realistic environments where people may
e eating. Subjects were videotaped and monitored by a multi-
odal sensor system which included a miniature IASUS NT (IASUS

oncepts Ltd.) throat microphone located over the laryngophar-
nx. The microphone provided a dynamic range of 46 ± 3 dB with a
requency range of 20–8000 Hz. Microphone signals were ampli-
ed by a custom-built pre-amplifier with a variable gain in the
ange 20–60 dB. The gain of the amplifier was set experimentally
o reliably capture the subtle sounds of swallowing without satu-
ating the amplification circuits during normal speech and fixed for
he whole data collection process. Amplified signals were recorded
hrough a line-in input of a standard sound card at a sampling rate
f 44,100 Hz. The recordings were manually scored to mark the
oundaries of food intake periods and each swallowing instance.
he scoring software was developed to allow assignment of cor-
esponding labels using manual review and playback of acquired
ideo and sensor data. To evaluate the accuracy of manual swallow-
ng score a multi-rater reliability study was conducted with three
aters on data from five out of the 21 subjects [13]. Comparing man-
al scores from three raters the study showed high reliability of the
anual scores with average intra-class correlation (ICC) coefficient

f 0.98 obtained for scores of swallowing instances. The range of the
CC is between 0 and 1 and high value of ICC means that there is

ittle variation between the scores given by different raters. This
ndicates a high degree of agreement between raters suggesting
hat manual scores are reliable for use as a gold standard in valida-
ion of automatic swallowing and food intake detection algorithms
ssing and Control 7 (2012) 649– 656 651

on a large dataset. To the best of our knowledge the 65 h dataset
with over 10 K swallows used in [13] is the largest dataset collected
to date in a study of ingestive behavior monitoring based on data
from wearable non-invasive sensors. It is also the most complex
dataset with inclusion of a variety of sound artifacts and back-
ground noises of various origins, various foods and human subjects
with different degrees of adiposity to create experimental condi-
tions resembling those of free-living food consumption. Out of the
84 originally collected visits, 4 visits from one subject were used
for the initial calibration of the multi-modal monitoring system
and therefore discarded from further studies. Another 10 visits had
partially incomplete data and were discarded from the dataset. All
the cases of incomplete data can be traced to a single reason of oper-
ator’s error during the data collection. The detailed description of
those errors can be found in [13]. From the remaining 70 complete
visits only 12 out of 20 subjects had complete datasets for all four
visits. These 12 subjects comprise the dataset used to validate the
methodology proposed in this paper. This derived dataset is large
(44.1 h with a total of 7305 swallows) and as complex as the original
dataset since it includes the same variety of data for the population
with similar average degree of adiposity. Namely, the average BMI
for the derived dataset is 29.2 ± 6.9 compared to 29 ± 6.4 of the
original dataset. Average intra-visit swallowing detection accuracy
calculated for the derived dataset is 96.7% (per-epoch) and 85.1%
(per-swallow) compared to 96.8% and 84.7% respectively obtained
for the original dataset. This indicates that the derived dataset is a
representative subset of the original dataset.

3.2. Automatic detection of swallowing instances

The methodology for automatic detection of swallowing
instances with acoustical sensors for this paper is based on the
methods proposed in [16] with two major improvements: pre-
processing of mel-scale Fourier spectrum (MSFS) features using
principal component analysis (PCA) and postprocessing of the
automatically detected swallowing instances using a smoothing
algorithm. A summary of the original methodology and description
of proposed improvements are presented below.

The original methodology was based on MSFS for
time–frequency representation and support vector machines
(SVM) for automatic detection of characteristic sounds of swallow-
ing. First, the sound stream was split into a series of overlapping
epochs and mel-scale Fourier transform was applied to each epoch.
Second, the resultant epoch feature vectors were merged for a
number of adjacent epochs to produce time-lagged feature vectors
accounting for time-varying structure of a swallow. Assuming a
feature vector fi was  formed for each epoch a time-lagged feature
vector f ′

i
was produced by merging feature vectors of the 2 × K + 1

adjacent epochs: f ′
i

= {fi−K , . . . , fi, . . . , fi+K }. These time-lagged
vectors were used as inputs for training and validation of the
SVM classifier using the Gaussian radial basis kernel function.
Near-optimal values for the following parameters: epoch duration
of 1.5 s, epoch step size of 0.2 s, eighth MSFS decomposition
level, number of lags K equal to 1, SVM misclassification penalty
parameter equal to 10 and Gaussian kernel width parameter equal
to 0.05 were determined using a grid search procedure in our
previous work and used in the current study [16].

Binary class labels assigned to each 1.5 s epoch for training
and prediction of automatic score by SVM were produced in the
following way: if any part of the epoch was  scored manually as
belonging to the swallow class then the epoch label was set to
‘1’ (swallow epoch), otherwise it was  set to ‘−1’ (non-swallow

epoch). These labels represent accuracy of the classifier on epoch
level and do not correspond well to the accuracy of detection of
swallowing events. To evaluate the classifier swallowing detection
accuracy gold standard manual and automatically produced epoch
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cores were used to identify the swallowing instances consisting
f multiple epochs. Then the numbers of true positive (T+), false
ositive (F+), false negative (F−), and true negative (T−) detections
ere calculated. A swallow detection was considered a true pos-

tive if both manual and automatic scores contained continuous
equences of swallow epochs intersecting at one or more epochs
r on the sequence boundary. These detections were later used to
alculate sensitivity (T+/(T+ + F−)), specificity (T−/(T− + F+)), and
revalence ((T+ + F−)/(T+ + T− + F+ + F−)) to further calculate the
verall accuracy ((T+ + T−)/(T+ + T− + F+ + F−)) of swallow detec-
ion as the weighted average of sensitivity and specificity, where
ensitivity is weighted by prevalence and specificity is weighted by
he complement of prevalence [1].

The methodology was tested on the original dataset contain-
ng 70 visits from 20 subjects. Each visit was divided into 55
qual segments with an average duration of 1 min. Three-fold
ross-validation was performed with two folds (two of every three
onsecutive segments) used for training and one fold used for val-
dation at each step. An average detection accuracy of 96.8% for
pochs and 84.7% for swallowing instances was obtained for such
ntra-visit model [16]. Analysis of obtained results also revealed
hat detection accuracy seemed not to be dependent on subject’s
MI  and had substantial tolerance to sound artifacts resulting

rom food intake, intrinsic speech and background noise. Complete
etails on the methodology including justification of selection of
eature extraction and classification mechanisms and assessment
f near-optimal parameters can be found in [16].

As a first proposed improvement to the swallowing detection
ethodology PCA was used for preprocessing of MSFS features.

he combination of two machine learning algorithms: supervised
VM and unsupervised PCA is widely used in biomedical engi-
eering [4,12].  PCA is a multivariate non-parametric statistical
echnique that when applied to a number of possibly correlated
ariables reveals the internal structure of the data in a way that
est explains its variance and to transform the data into a new set of
rthogonal variables called principal components which are linear
ombinations of the original variables. The first principal compo-
ent accounts for as much of the variance in the original data as
ossible, and each succeeding component accounts for as much of
he remaining variance as possible. A detailed description of the
CA theory is out of the scope of this paper and can be found
n [5].  Measuring variance along each principal component pro-
ides information on the relative importance of each component.
herefore, PCA is often used for dimensionality reduction of feature
ectors with a smaller number of principal components being used
ompared to the original feature vector dimension. Since kernel
ethods like SVM are tolerant to high dimensionality of features
e used PCA with the maximal number of principal components
ot losing any data from the original dataset.
As the second proposed improvement, a postprocessing
moothing algorithm was used to refine the automatic score
roduced by the SVM. Refinement of the automatic epoch score
y a smoothing algorithm was performed in two  steps. Two

ig. 2. Refinement of the automatic epoch score by a smoothing algorithm in two  steps 

isclassified epoch; (b) accidental epochs are incorrectly classified as swallows.
ssing and Control 7 (2012) 649– 656

predefined thresholds whose optimal values were obtained using
grid search were used. First, labels for short segments, of up to
a first threshold, of a predefined number of epochs in duration
that were automatically marked as ‘−1’ (non-swallow epochs) but
were surrounded by epochs marked as ‘1’ (swallow epochs) on
both sides were reset to ‘1’. This postprocessing step was  needed
to correct the situations in which a single swallow of more than
two epochs may  be split into several parts by a misclassified epoch.
Second, labels for short segments, of up to a second threshold, of a
predefined number of epochs in duration that were automatically
marked as ‘1’ but were surrounded by epochs marked as ‘−1’ on
both sides were reset to ‘−1’. This step eliminated the cases where
accidental epochs were incorrectly classified as swallows. An
illustration of the automatic score refinement with the smoothing
algorithm is presented in Fig. 2.

The results of testing of both the original and improved swal-
lowing detection techniques as a part of a food intake detection
methodology in intra- and inter-subject models are presented
below.

3.3. Automatic detection of food intake

Our food intake prediction approach assigns binary labels
‘intake’ or ‘no intake’ to predefined length time windows based
on the average instantaneous swallowing frequency (ISF) calcu-
lated for the current window. The ISF is the inverse of the time
between each two  consecutive swallows and is expressed in swal-
lows per minute: ISFj

i
= 60/(ti − ti−1) (sw/min), where ti is the

temporal location of the swallow occurrence in seconds for swallow
i = 2, . . . , Nj and Nj is the total number of swallows of the cur-
rent window j. A higher ISF indicates shorter time between two
consecutive swallows.

Selection of the intake detection window size defines the tem-
poral resolution. As higher frequencies of swallowing indicate the
presence of food ingestion the window should be long enough to
reliably detect an increase in the number of swallows associated
with food consumption compared to spontaneous swallowing, i.e.
the smallest window size is limited by the minimal detectable
change in swallowing frequency. At the same time the window
should be short enough to detect such short food consumption
events as snacking. In [15] we  estimated the optimal trade-off
between detection accuracy and temporal resolution to be a time
window length of 30 s. The same window length was used for the
current study.

Detection of food intake using swallowing frequency as a
predictor was performed using a floating average prediction
model in the following way: first, a decision threshold T =  ̨ ·
(1/M)

∑M
j=1

(
(1/Nj)

∑Nj
i=2ISFj

i

)
is calculated as a product of the aver-
age ISF of the training set multiplied by a scaling factor  ̨ where M
is the number of time windows in the training set and j = 1, . . .,  M.  In
this way  a decision threshold is a function of the average ISF. Food
intake labels are determined for each time window in the training

correcting the situations where: (a) a single swallow is split into several parts by a
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et: if the average ISF for the current window is greater than or
qual to the decision threshold then the current window is labeled

intake’:

j =
{

‘intake’ if ISF
j ≥ T

‘no intake’  if ISF
j

< T
.

Training is repeated for a range of scaling factors  ̨ and the
ptimal scaling factor is selected based on the highest prediction
ccuracy achieved for the training set and further used for intake
etection on the validation set. Food intake label determination
or the validation set is determined similarly as on the training set
sing the optimal scaling factor to obtain the decision threshold T.
omplete details on this approach can be found in [15] where a sim-

lar model was proposed and validated with an average accuracy of
7% obtained on the manual scores from the dataset described in
13].

.4. Detection models

The validation of the proposed automatic food intake detec-
ion methodology based on swallowing sounds was performed for
ntra- and inter-subject models (as opposed to intra-visit swallow-
ng detection model previously used in [16]). Descriptions of both

odels are presented below.
Individual (subject-specific) intra-subject food intake detection

odel was built separately for each subject so models for differ-
nt subjects were independent from each other. Only data from
he individual subject was included in each intra-subject model.
our-fold cross-validation was used with each of the four visits per
ubject used as a fold. At each cross-validation step both swallow-
ng detection and food intake detection were performed with three
isits of a subject used for training and the remaining one used for
alidation. Namely, each cross-validation step consisted of:

 Swallowing detection stage: acoustical sensor data and manual
swallowing scores for three training visits were used to produce
the automatic swallowing score for the validation visit.
Food-intake detection stage: manual swallowing and food intake
scores for three training visits were used to obtain an optimal
scaling factor that was used for intake detection on the valida-
tion visit using the automatic swallowing score from the previous

stage.

 Accuracy assessment: manual food intake score for the validation
visit was used as the gold standard to calculate the accuracy of
food intake detection.

able 1
ffects of preprocessing (PCA) and postprocessing (smoothing algorithm) on average accu

Intra-subject model Average accuracy [sensitivity, specificity] (%)

Baseline Baseline + preprocessin

Per-epoch swallowing detection 95.1 [39.3, 98.7] 95.7 [42.6, 99.2] 

Per-swallow swallowing detection 74.5 [66.2, 81.7] 79.2 [72.5, 84] 

Food  intake detection 76.4 [68.2, 79.2] 75.8 [71.8, 77.5] 

able 2
ffects of preprocessing (PCA) and postprocessing (smoothing algorithm) on average accu

Inter-subject model Average accuracy [sensitivity, specificity] (%)

Baseline Baseline + preprocessin

Per-epoch swallowing detection 91.5 [36.3, 95.2] 93.5 [25, 98] 

Per-swallow swallowing detection 64 [62.1, 69.6] 65.3 [52.1, 72.9] 

Food  intake detection 74.2 [70.7, 75.7] 59.8 [66.1, 57.5] 
ssing and Control 7 (2012) 649– 656 653

Group (non-personalized) inter-subject food intake detection
model was built for the entire population. Twelve-fold cross-
validation was used with each fold representing all four visits of
a certain subject. At each cross-validation step all the data from
eleven subjects was  used for training and all the data from the
remaining one subject was  used for validation. Namely, each cross-
validation step consisted of:

o Swallowing detection stage: acoustical sensor data and man-
ual swallowing scores for data from eleven subjects were used
to produce the automatic swallowing scores for data from the
remaining subject.

o Food-intake detection stage: manual swallowing and food intake
scores for data from eleven subjects were used to obtain an opti-
mal  scaling factor that was further used for intake detection on
the data from the remaining subject using the automatic swal-
lowing scores produced at the previous stage.

o Accuracy assessment: manual food intake scores for data from
the validation subject were used as the gold standard to calculate
the accuracy of food intake detection for all of the subject’s four
visits.

4. Results

4.1. Intra-subject food intake detection model

The results of automatic detection of swallowing and food intake
for intra-subject model with and without preprocessing with PCA
and postprocessing with the smoothing algorithm are presented
in Table 1. Distributions of per-subject swallowing and food intake
detection accuracies versus the subject’s BMI  and corresponding
linear fits of the data are presented in Fig. 3 for the case of the
highest average food intake detection accuracy obtained for the
intra-subject model highlighted with bold in Table 1. In Table 1
per-epoch and per-swallow swallowing detections correspond to
classifier detection accuracies on epoch and swallowing instance
levels respectively.

4.2. Inter-subject food intake detection model

The results of automatic detection of swallowing and food intake
for inter-subject model with and without preprocessing with PCA
and postprocessing with the smoothing algorithm are presented
in Table 2. Distributions of per-subject swallowing and food intake

detection accuracies versus the subject’s BMI  and corresponding
linear fits of the data are presented in Fig. 4 for the case of the
highest average food intake detection accuracy obtained for the
inter-subject model highlighted with bold in Table 2.

racy for intra-subject model.

g Baseline + postprocessing Baseline + preprocessing + postprocessing

95 [40.7, 98.5] 95.7 [44, 99]
75.9 [64.9, 84.8] 80.4 [71.3, 87]
77.5 [68.5, 80.4] 80.3 [71.4, 84.2]

racy for inter-subject model.

g Baseline + postprocessing Baseline + preprocessing + postprocessing

90.9 [39, 94.3] 93.3 [26.5, 97.8]
66.4 [60, 73.1] 66.7 [51.5, 75.6]
75.2 [67.9, 78.5] 60.1 [64.7, 58.1]
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ig. 3. Intra-subject model: distribution of accuracies for per-epoch and per-swallow
inear  fits plotted for the case of the highest average food intake detection accuracy

. Discussion

As can be seen from Tables 1 and 2 the highest average food
ntake detection accuracies of 80.3% and 75.2% were obtained for
ntra- and inter-subject models respectively. Linear fits for distribu-
ions of per-subject food intake detection accuracy versus subject’s
MI  are presented in Figs. 3 and 4. While the linear fit for intra-
ubject model has a negative slope of less than 0.01 the one for
nter-subject model has a negative slope of 0.62 with accuracy
ecreasing with an increase of BMI. Still, even for the volunteer
ith the highest BMI  in this study (BMI of 42.1, severe obesity) the

nter-subject food intake detection accuracy was 70.6% suggesting
hat the proposed food intake detection approach is suitable for

onitoring of obese individuals even though more data is needed
or conclusive proof.

It can be seen from Tables 1 and 2 that the effect of feature
reprocessing using PCA was different for intra- and inter-subject

odels. For intra-subject model there was an improvement in the

etection accuracy while for inter-subject model there was none.
e believe that this difference may  be attributed to the difference

ig. 4. Inter-subject model: distribution of accuracies for per-epoch and per-swallow swal
inear  fits plotted for the case of the highest average food intake detection accuracy highl
lowing detection and food intake detection versus subject’s BMI  with corresponding
ighted with bold in Table 1.

in PCA application for the two  models. This difference stems from
computational burden of the covariance matrix calculation needed
to compute the principal components. Dimensionality of the
covariance matrix is equal to the squared number of observations
or, in our case, epochs in the dataset. The covariance matrix is
calculated for the training set and is used to calculate the matrix
of eigenvalues which is further used to project the validation data
onto the new orthogonal basis. For the intra-subject model the
training set is limited to the three visits from a particular subject
and the associate covariance matrix can be calculated directly. For
inter-subject model the training set includes a total of 44 visits
from eleven subjects. With over fourteen times the calculations
a complete covariance matrix is infeasible. Therefore, to apply a
similar methodology in both cases, subsets are selected randomly
from the training set and PCA training is performed on these
subsets only. The largest feasible number of visits to use as a subset
(three) was  determined empirically. Representativeness of such a

small subset is very limited. Allowing a better representation of the
training set data in covariance matrix for inter-subject model could
potentially result in increased food intake detection accuracy.

lowing detection and food intake detection versus subject’s BMI  with corresponding
ighted with bold in Table 2.



 Proce

o
t
c
i
s
u
s
o
d
t
b
p
e
a
d
b
t
o
d

t
T
s
t
u
c
t

e
p
s
v
f
b
v
t

a
t
[
o
o
d
t
i
l
i
t
p
c
a
e
o
e
T
[
t
u
F
n
f
v
p
a
H

O. Makeyev et al. / Biomedical Signal

It can also be seen from Tables 1 and 2 that while in the case
f intra-subject model application of PCA increased both sensi-
ivity and specificity at the stage of swallowing detection, in the
ase of inter-subject model sensitivity decreased and specificity
ncreased. The latter increased the existing imbalance between
ensitivity and specificity for inter-subject model along with an
nderlying imbalance between false negative and false positive
wallowing detections. Even though food intake detection may
ffer some tolerance to errors in automatic swallowing detection
ue to food intake detection being based on time intervals con-
aining multiple swallows such tolerance depends on the balance
etween false negative and false positive swallowing detections
artially cancelling each other. Therefore, even though the high-
st overall swallowing detection accuracy for inter-visit model was
chieved with application of the PCA the highest overall food intake
etection accuracy was obtained for the case of the best balance
etween sensitivity and specificity of swallowing detection. Fur-
her investigation is needed for more precise evaluation of the effect
f automatic swallowing detection errors on accuracy of food intake
etection.

The postprocessing smoothing algorithm improved the detec-
ion accuracy for both models as can be seen in Tables 1 and 2.
he optimal thresholds of number of epochs for swallow and non-
wallow gaps were equal to 5 and 0 respectively. The optimal
hresholds were determined with grid search and suggest that sit-
ations where not all epochs belonging to a single swallow were
lassified correctly created additional false positive swallow detec-
ion errors.

Finally, from Tables 1 and 2 and Section 3.1 we  can see that
ven with the proposed improvements the highest per-epoch and
er-swallow swallowing detection accuracies for intra- and inter-
ubject models are lower than the ones obtained with training and
alidation performed on each visit separately as in [16]. Several
actors could be contributing to satisfactory generalization capa-
ility of swallowing detection including intra- and inter-subject
ariability of swallowing sounds. Further investigation is needed
o determine the sources.

While the swallowing based automatic food intake detection
pproach proposed in this paper cannot be directly compared with
he intake gesture and chewing based approaches proposed in
6,11] respectively, we can compare the validation procedure to the
ne used in [6].  In [6] results comparable to the ones obtained in
ur study are reported for subject-specific intra-subject model vali-
ated on a dataset with a total of 784 intake gestures compared to a
otal of 7305 swallows in our study. No results for non-personalized
nter-subject model were reported in [6] like our report. In [11] very
imited detail is provided on the validation procedure limiting the
nterpretation of the reported high average detection accuracy. Fur-
hermore, the proposed swallowing based approach may  be less
rone to some of the limitations inherent in intake gesture and
hewing based approaches. Namely, limitations of intake gesture
pproach include: first, not all food items require intake gestures,
.g. a high-caloric milkshake can be consumed using a straw. Sec-
nd, arm movements to the head that are not related to food intake,
.g. brushing teeth, smoking, etc., may  result in misclassifications.
hird, high intra-subject variability of intake gestures is reported in
6] caused by differences in size and consistency of food pieces and
emporal aspects such as changes in food temperature and nat-
ral satiety subjects were developing during the intake sessions.
inally, even though inter-subject variability of intake gestures has
ot been evaluated there may  be significant differences due to dif-

erences in human eating behaviors, e.g. eating with chopsticks

ersus cutlery. Chewing and swallowing seem to be less related to
ersonal eating behaviors and, therefore, may  offer smaller intra-
nd inter-subject variability for automatic detection of food intake.
owever, the usability of food intake detection based on chewing
ssing and Control 7 (2012) 649– 656 655

sensors is limited to solid foods since there is little to no chew-
ing present during consumption of liquid and certain semisolid
(yogurt, pudding, etc.) food items. This limitation makes chewing
sensors more feasible for sensor fusion rather than for an inde-
pendent food intake detection sensor. Furthermore, the absence
of spontaneous chewing throughout the day as compared to, for
example, swallowing gives no indication whether the MIB device
based on the chewing sensor is being worn or not making the
device vulnerable to intentional misreport of food intake. Based on
these actual and potential limitations of intake gesture and chew-
ing based approaches we  can conclude that swallowing sensor may
be the most promising option for creation of a single sensor MIB
device even though it also has several actual and potential limita-
tions. First potential limitation is situations where swallowing rate
is elevated for other reasons than food intake, e.g. mental strain,
emotional reactions, etc. For example, in a study conducted by
Cuevas et al. on data from 38 generally healthy undergraduates
pleasant low arousal, neutral, or aversive high arousal condition all
resulted in significantly increased spontaneous swallowing rates
with means of 7.9 ± 1.9 (standard error), 15.8 ± 2.4, and 23.7 ± 3.6
swallows per 30 min, respectively [3].  In this case even the high
arousal condition resulted only in 23.7 ± 3.6 swallows per 30 min
swallowing rate corresponding at most one swallow per minute.
At the same time in our study on using swallowing frequency as
predictor of food intake we have found that the Bayes optimal
threshold which defined an optimal decision boundary between
the classes of “food intake” and “no food intake” was equal to 4
swallows per minute [15], i.e. it was at least four times higher
than spontaneous swallowing rate during high arousal emotional
state. This is an indication that alteration of spontaneous swallow-
ing frequency due to emotional state is unlikely to cause problems
to our food intake detection methodology. Further investigation
is needed to evaluate the impact of other potential causes of ele-
vated swallowing rate on food intake detection accuracy. Second
potential limitation of an approach based on swallowing sensor is
related to differences in voluntary swallowing rates for different
individuals. These differences are part of our motivation to eval-
uate the non-personalized inter-subject model in this work and
to compare its performance to performance of the subject-specific
intra-subject model. Even though the performance for the for-
mer  model was worse the difference between average food intake
detection accuracies for intra- and inter-subject groups (80.3% and
75.2% correspondingly) was  not significant (p = 0.093, two-sample
t-test for comparison and Ryan-Joiner test for normality of sam-
ple distributions) suggesting that aforementioned differences are
not rendering the proposed approach useless. Analysis of larger
subject populations for longer study durations is needed for a con-
clusive proof and is planned for future work on this project. Most
importantly, third limitation is related to the effect of sound arti-
facts and background noises on accuracy of acoustical swallowing
detection and therefore accuracy of food intake detection. In our
previous work we  have assessed this effect on intra-visit swallow-
ing detection accuracy where the highest accuracy was observed for
quiet (no talking or reading aloud) periods of no food intake (88%)
and the lowest one was  observed for periods of food intake com-
bined with talking and background noise (82.9%) [16]. These results
suggest that artifact sounds may  negatively impact the detection
accuracy. It was  not feasible to perform a similar assessment in cur-
rent study since cross-validation for both intra- and inter-subject
models involved grouping together subject visits with and with-
out artifacts and noise. Overall, further investigation of this effect
is needed with application of noise cancellation techniques hav-

ing the potential to improve the detection accuracy. Finally, further
comparison between different sensor modalities needs to be drawn
including aspects other than detection accuracy such as comfort,
acceptance, scalability, etc.
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