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a  b  s  t  r  a  c  t

The  number  of distinct  foods  consumed  in a  meal  is  of  significant  clinical  concern  in the  study  of obesity
and  other  eating  disorders.  This  paper  proposes  the  use  of  information  contained  in  chewing  and  swallow-
ing sequences  for meal  segmentation  by  food  types.  Data  collected  from  experiments  of  17 volunteers
were  analyzed  using  two  different  clustering  techniques.  First,  an  unsupervised  clustering  technique,
Affinity  Propagation  (AP),  was  used  to  automatically  identify  the  number  of segments  within  a  meal.
eywords:
onitoring of Ingestive Behavior

ood intake
lustering
ffinity Propagation

Second,  performance  of the  unsupervised  AP  method  was  compared  to a supervised  learning  approach
based on  Agglomerative  Hierarchical  Clustering  (AHC).  While  the  AP method  was  able  to obtain  90%  accu-
racy in  predicting  the  number  of  food  items,  the  AHC  achieved  an  accuracy  >95%.  Experimental  results
suggest  that  the  proposed  models  of  automatic  meal  segmentation  may  be utilized  as  part  of  an  integral
application  for  objective  Monitoring  of  Ingestive  Behavior  in free  living  conditions.
gglomerative Hierarchical Clustering

. Introduction

Dietary self-report methods commonly used for Monitoring of
ngestive Behavior (MIB) like observation, weighed food records,
stimated records, diet history food-frequency questionnaires,
ood recall methods and others have been used intensively in
esearch. However, the majority of them suffer from subject’s
nderreporting (ratio of estimate over actual intake) down to 0.84
1]. The reason for subject’s underreporting related to these meth-
ds is mainly due to two main factors: the change in eating behavior
hat occurs when subjects are asked to record their intake (observa-
ion effect), and the subject’s tendency to misreport their changed
ating behavior (reporting effect) [2–4]. Observation effect can lead
o an overall decrease of 5% in intake estimation accuracy, while
eporting effect is much more variable and results in decreases
anging from 5% to 20%, depending on the intake measurement
ethod used [4].

Additionally, underreporting does not only result from a sys-

ematical underestimation of portion sizes for all food items, but
s also related to avoiding the reporting of certain intake behaviors
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like snacking [5,6] and consumption of some specific food items
[7]. Overall, there is a current need for developing more objective
means for MIB  that eliminate the burden of subject’s active par-
ticipation in reporting of not only the food size, but also the food
periods during the day and different types of food items ingested
[7].

In previous studies, we  developed a sensor system for non-
invasive monitoring of chewing and swallowing and validated the
reliability of the produced manual scores [8–10], established a
methodology of automatic detection of swallowing instances by
acoustical means [11], and proposed and validated several methods
for detection and characterization of food intake based on chewing
and swallowing [10,12]. In this study, we  propose a methodology to
identify the number of distinct food items within a meal using infor-
mation extracted from deglutition and mastication patterns. Our
methodology is a follow-up on our ongoing research that comprises
different stages for automatic objective MIB.

Successful identification of food items not only simplifies under-
standing of eating behaviors associated with obesity and other
eating disorders, but could also be very helpful when monitoring
patients with certain diseases. For example, the rate of relapse in
patients with anorexia nervosa is estimated to be as high as 50%

[13]. One study showed that the selection of a diet with low energy
density and limited variety of food items was associated with a
poor treatment outcome [14]. Also, a controlled diet consisting
in very-low calorie food items in obese type 2 subjects promotes

dx.doi.org/10.1016/j.bspc.2011.11.004
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
mailto:esazonov@eng.ua.edu
dx.doi.org/10.1016/j.bspc.2011.11.004
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ong-term glycemic control [15]. This study showed that such type
f diet produced greater decreases in fasting glucose, with the addi-
ional benefit of weight loss. Development of an objective method
or monitoring of variety of food items consumed by subjects with
iseases like the ones described could potentially lead specialists
o a better clinical treatment and recovery control.

Several methodologies have been proposed, urging the need
f automatic objective methods for MIB  and classification of food
tems consumed. A study proposed the use of a semi-automatic

ethod to classify the food items from recorded shopping receipts
nd keep track of their nutritional content to generate suggestions
bout healthier food items that could help to supplement miss-
ng nutrients [16]. However, this method relies in subject’s active
articipation to swipe receipts into a handheld scanner. Also, the
hopping suggestions of the system are based on purchases and not
ecessarily consumed foods. Another study proposed the use of a
ining table instrumented with weight sensors and radio frequency

dentification (RFID) of food containers to detect and distinguish
ow and what people eat [17]. While this sensor device is still under
evelopment, several limitations were mentioned by the authors
hen reporting their results: external food sources are not allowed
ifferent than those contained in RFID containers; weight, nutri-
ion, ingredients of foods, as well as weight and owners of food
ontainers are known a priori; leaning hands and elbows over the
able is avoided. These limitations make this device at the moment
mpractical for free-living conditions. A different approach was
sed in another study where multi-sensor based monitoring is used
o identify intake gestures, chewing and swallowing to provide tim-
ng and food category information [18]. This method successfully
iscriminates different events by the gesture behavior such as eat-

ng with fork and knife, drink from a glass, eat with a spoon, or the
se of hands to approach food to the mouth. The motion sensor

acket developed was a research prototype and less complex sen-
ors are being developed. Recently, the use of mobile phones has
een proposed in which subjects capture images of a meal being
onsumed to be transferred for further analysis [19,20].  As with the
ood monitor using shopping receipts [16], this type of monitoring
till presents a burden to the subject under evaluation that might
hange an ad libitum eating behavior. A wearable device almost
ompletely passive to the subject and still under development is
roposed in [21] with a camera collecting images of the meal and

 dietician later evaluating the image sequence to determine the
ood items.

The methodology we propose here is based on the use of fea-
ures extracted from the monitoring of swallowing and chewing
o segment a meal into the different food items it consists of. We
elieve that monitoring of chews and swallows over time provide

 useful measure for food intake pattern identification of different
ategories of food since both activities are directly related to the
ood intake process in healthy humans.

. Methods

.1. Data collection

The data for the development of the proposed models described
n this work were collected in a study reported in previous pub-
ished work [8].  Data from 17 human subjects (11 males, 6 females)

ere used. The average body mass index across the sample pop-
lation was equal to 28.81 ± 6.61 kg/m2, age of subjects varied
rom 18 to 48 years old. The subjects reported no dental problems

hat would deficit their normal masticatory ability to process food.
n attempt to recruit a diverse population was  made in terms of
ender, ethnicity, age, and body size. Institutional Review Board
pproval was obtained for this study. Subjects read and signed the
cessing and Control 7 (2012) 474– 480 475

informed consent form document. Each subject performed from
two  to four meal experiments on separate days. In each experiment,
subjects were asked to eat a meal consisting of a slice of cheese
pizza, a can of 1% fat yogurt, an apple, a peanut butter sandwich
(PB) and a cup of water consumed in order. The selection of foods
represented different food properties that may  impact chewing and
swallowing, such as crispiness, moistness, softness/hardness and
tackiness, and focused the experiment on inter-subject variability
of chewing and swallowing pattern rather than inter-food variabil-
ity. In half of the meal experiments, subjects were asked to remain
silent, and in the other half they were involved into conversation
with the experiment’s operator.

During a meal, the subjects were monitored by a number of
sensors capturing and characterizing the process of chewing and
swallowing. Chewing was monitored by a strain sensor located in
the area immediately below the ear. Swallowing was  monitored
by a microphone located over the laryngopharynx. In addition to
these sensors the subjects were also videotaped in profile. Time-
synchronous recordings from the sensors and video were reviewed
in specially designed software and used for manual scoring process
[8].

The produced manual scores contain timetable and duration of
each swallow and chew as well as the number of chews in each
mastication period [8].  Manual scores of the swallows and chews
provided the initial data for the meal segmentation models. In total,
66 meals were scored, with around 17.5 h of meal recordings con-
taining 5634 swallows and 44,038 chews.

2.2. Features extraction

Information from swallowing and chewing scores was analyzed
to extract features which were used for meal segmentation into
different food items. Three types of features were defined that char-
acterize the timing and frequency of chewing and swallowing. The
first feature analyzed was  the location in time ti of each swallow for
i = 2, . . .,  k total number of swallows in a particular subject’s meal.
This feature was  obtained as the center point between the begin-
ning and end, defined by the manual scores, of the ith swallow.
The underlying assumption for using this feature is that most indi-
viduals consume foods bite by bite at a time during a meal, thus
making occurrence time of each swallow contained in each bite
an important feature in grouping the swallows related to a certain
food.

The second feature was  the Time to Preceding Swallow for the
ith swallow expressed in seconds and defined as TPSi = ti − ti−1,
which is the difference in occurrence time between a swallow
located at moment ti with respect to the previous swallow located
at moment ti−1. The third feature was the number of chews between
two  consecutive swallows, ti and ti−1, defined as Chews Preceding
a Swallow CPSi = Ni

∣
∣ti

ti−1
.

Although eating behavior is influenced by a large number of
external factors like palatability, time of day, day of the week, social
environment, etc. [22], the main hypothesis of the experiment was
that different foods generate different chew and swallow sequences
due to different properties of the foods being consumed in a meal
[23]. Fig. 1 shows an example of the TPS and CPS signals generated
for a complete meal of one subject. It can be seen that different foods
in the experimental meal create distinct patterns in terms of TPS
and CPS metrics over time. As an example, moist semi-solid food
(yogurt) exhibits low chewing duration and high frequency of swal-
lowing, while a tacky food (peanut butter sandwich) exhibits low

swallowing frequency with prolonged periods of chewing. Thus,
transitions between different foods in a meal can potentially be
discovered by monitoring changes in features of the time sequence
of chews and swallows.
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A threshold  ̨ was set in such a way  that clusters with linkage
distances lower than a certain value were merged into a new clus-
ter. Representation of the linkage distances can be observed at the
ig. 1. Example of a complete meal of a subject. The figure on top shows the TPS sig
ime  boundaries of the different segments or food items. Swallow locations in time

Each swallow during consumption of given food was  assigned
 class label. Class labels were defined as Ci ∈ {1, 2, 3, 4, 5}, repre-
enting swallows of pizza, yogurt, apple, PB and water respectively.
eature vectors Ti were built based on different combinations of the
escribed features as:

i =
{

xi, Ci

}∣
∣k

i=1
(1)

here the combination of features for different space dimension-
lity was studied to observe the impact of ti, TPS and CPS, extracted
rom the data, in the performance of the implemented models. Each
f these feature combinations were defined as:

- xi ∈ �1 = {ti}
- xi ∈ �2 = {CPSi, TPSi}
- xi ∈ �3 = {ti, CPSi, TPSi}
- xi ∈ �7 = {ti, TPSi−1, CPSi−1, TPSi, CPSi, TPSi+1, CPSi+1},

or i = 1, 2, . . .,  k and k being the total number of swallows in a
ubject’s meal. The first feature set (� 1) investigated the effect of
equence in food consumption. The second feature set (� 2) focused
ust on properties of chewing and swallowing associated with a
iven swallow, regardless of where they reside in time sequence of
ood intake. The third (� 3) and fourth feature (� 7) sets studied if the
ccuracy of meal segmentation can be further improved by combin-
ng information from (� 1) and (� 2), and introducing information
rom the nearest swallows, respectively.

.3. Meal segmentation

In order to identify groups of food within a meal, a clustering
pproach was used based on two different techniques. The first
ne is a relatively new unsupervised method named Affinity Prop-
gation (AP); this method is a clustering algorithm that passes
essages between data points to identify exemplars and form clus-

ers around them [24]. It operates by simultaneously considering
ll data points as potential exemplars and exchanging messages
etween data points until a good set of exemplars and clusters
merges. One of the advantages of AP over other clustering tech-
iques is the ability to determine the number of clusters from a

iven data set [24].

This approach was used in an attempt to automatically estimate
he number of segments within the meal used in our experiments
ithout specifying any a priori information about the number of
nd the one on the bottom shows the CPS signal. Vertical dashed lines represent the
presented as dot marks.

food items consumed by the subjects using the feature vectors
Ti ∈ � d as defined in Section 2.2.

The accuracy of the AP model in finding the correct number
of food items was obtained based on an error measure across all
subjects and all experiments as:

Acc cluster% = (1 − E) × 100 (2)

where E is the error measure of finding exactly 5 known food items,
defined as E =

∣
∣n − 5

∣
∣/5, with n being the number of estimated

food items. Additionally, to compare accuracy between supervised
and unsupervised approaches, a second model was implemented
using Agglomerative Hierarchical Clustering (AHC) [25–27].  First,
each feature vector Ti ∈ � d was considered a singleton cluster and
the proximity matrix was  calculated for the k initial clusters, using
unweighted average distance algorithm (UGPGMA) with Euclidian
distance as a measure between points [27]. This linkage distance
represents the extent in which clusters are proximal to each other.
Fig. 2. The dendrogram shows the hierarchical tree for all swallows with an optimal
threshold  ̨ (dashed line) obtained using supervised learning to find the correct
number of food items, described by the branches below the threshold.
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he  highest probability represents the optimal threshold of the linkage distances to
roup swallows into groups of the same food type.

endrogram shown in Fig. 2. Here, the linkage distance is normal-
zed to range [0,1].

With an ˛ = 0, each swallow represented by a leaf on the den-
rogram is interpreted as a cluster and, consequently, as a different
ood item. At the other extreme, with an  ̨ = 1 all swallows will be

erged into one cluster, representing only one food item.
To find an optimal threshold ˛, half of the subjects were selected

andomly to be used as the training data set, and the remaining
ubjects were used as the validation data set. For each meal in the
raining set, all possible  ̨ values that give 5 groups were used to
uild a probability density estimation (PDE).

Fig. 3 shows the distribution of all possible  ̨ values obtained
rom the training data set. The optimal  ̨ selected is the one with
he highest probability of this obtained distribution. This  ̨ value is
hen applied as the threshold for the normalized linkage distances
f each meal in the validation set.

In Fig. 2, the optimal  ̨ obtained after training is shown as the

ash line that partitions the dendrogram, estimating in the given
xample five different food items.

The accuracy of the correct number of food items was  calculated
or the validation data set based on the error measure, as in Eq. (2).

ig. 4. Grouping of swallows using the Affinity Propagation clustering method. In increas
cessing and Control 7 (2012) 474– 480 477

Ten runs were performed using hold-out cross validation to
reduce variability due to random selection of the subjects for the
training data set, and overall accuracy was  assessed as the average
across these runs.

2.4. Classification of swallows

The capability of the models described above to classify swal-
lows into groups corresponding to food items consumed separately
by a subject was analyzed, thus evaluating the predictive power of
features derived from chewing and swallowing in the meal seg-
mentation. The association of swallows into different group types,
5 food items for the particular case of this study, is of significant
importance for the development of our proposed MIB  methodol-
ogy, since it has been observed that bite size, hence swallow size,
differs for different types of food, i.e. solids and semi-liquids [23],
and that the number of swallows is proportional to consumed food
mass [10].

Being able to classify swallows into groups of different foods
may  represent a viable measure for mass estimation of total food
consumed.

Fig. 4(a) displays an example of Ti =
{

xiCi

}∣
∣k

i=1
for xi ∈ � 3. It can

be observed how each one of the swallows was  grouped into one of
the five clusters for this particular experiment using the AP model.
Fig. 4(b) shows the projection of the clusters into the CPS-Time
plane and Fig. 4(c) shows the projection into the TPS-Time plane,
where separation of different clusters can be observed. The pro-
jection of the clusters into the plane CPS-TPS is shown in Fig. 4(d),
showing no obvious separation of different clusters.

In order to evaluate the ability of the segmentation models to
associate all swallows correctly into their corresponding food item,
an accuracy measure was defined as the ratio of correctly classified
swallows P for a given food type class C over the real number of
swallows R belonging to that same class:
Acc SwjC% = jC

RjC
× 100 (3)

for j = 1, . . .,  5 number of total subject’s consumed food items.

ing order of time, the swallow groups belong to: pizza, yogurt, apple, PB and water.
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Table 1
Average accuracy and standard deviation of the models implemented on finding the
correct number of 5 food items for different combinations of features.

xi ∈ � 1 xi ∈ � 2 xi ∈ � 3 xi ∈ � 7
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AP 89.7% (SD 13.2) 21.8% (SD 40.2) 88.8% (SD 14.1) 90.3% (SD 12.7)
AHC 91.3% (SD 9.9) 70.7% (SD 29.9) 92.9% (SD 9.6) 95.3% (SD 8.5)

. Results

Meal experiments from 17 subjects were used to analyze two
ifferent models to automatically perform meal segmentation.
wallow timing, TPS and CPS signals extracted from swallows and
hews occurrence respectively were used as features for these two
odels.
The first model was based on AP. Using this technique, the num-

er of exemplars emerged from the message-passing procedure
24], that is, AP was capable of finding the optimal number of exem-
lars of the data set without any a priori knowledge. The second
odel was a supervised method based on AHC that sets a threshold

nd merges clusters with low linkage distances.
Table 1 shows the accuracy results (from Eq. (2)) as the aver-

ge and standard deviation (SD) across all subjects of the different
ombinations of features described in Section 2.2 for both AP and
HC.

Fig. 5 shows the distribution comparison between the two mod-
ls, AP and AHC, for automatically finding the number of food items
n a meal. Results are expressed as a percentage across all subjects
or the best case obtained of each model, that is, Ti ∈ � 7 and optimal
hreshold  ̨ = 0.286 for the AHC model, which presents a significant
ncrease from 91.3% to 95.3% (paired t-test, p < 0.0015).

In comparison of obtained meal segmentation, accuracies for
isits where subjects remained silent during the meal with those
here subjects were encouraged to participate in conversation no

ignificant difference was observed (paired t-test, p > 0.05).
Accuracy of the classification of swallows (from Eq. (3)) is shown

n Fig. 6, where both models represent the correct association of
wallows into each food type.

. Discussion
This study presents two different models to automatically
btain the number of food items involved in a subject’s meal. To our
nowledge, this is the first attempt to automatically perform such

ig. 5. Automatic meal segmentation of food items consumed in a meal using
ffinity Propagation and Agglomerative Hierarchical Clustering. Results display the
ercentage of estimated number of food items over the a priori known number of 5
ood items using Ti ∈ � 7 and an optimal threshold  ̨ = 0.286 for the AHC model.
essing and Control 7 (2012) 474– 480

segmentation which is of interest for studies of dietary activities,
obesity and other eating disorders.

When performing automatic meal segmentation, AP found a
range of 4–7 (Fig. 5) food items for a 5-food items meal with an
accuracy of correct segmentation of 90.3% (Table 1). The supervised
AHC model implemented found a range of 4–6 food items (Fig. 5)
with 95.3% accuracy (Table 1) with training performed on half of the
dataset with the rest of the dataset used for validation. These results
show that the supervised model based on AHC has a higher perfor-
mance compared to the AP model in segmenting a meal, which can
be seen in the 75.76% of finding exactly 5 food items within the
meal, compared to the 59% of the AP model (Fig. 5). This might
be explained by the ability of the supervised learning methods to
adjust the tradeoff between the bias (incorrect output prediction)
and the variance (different output for different training sets) or the
learned model [28].

Swallow location in time ti appears to be the most efficient indi-
vidual feature used by the implemented models. This is expected
as the meals are typically consumed in a specific sequence (e.g.
salad, entree, desert) and many consecutive chews and swallows
will belong to the same food type and grouped in time. However,
the accuracy is improved >4%by introducing the CPS and TPS fea-
tures into the models and using �7 neighbors results in the AHC
model (Table 1). The highest accuracy obtained with the super-
vised model with a feature combination of xi ∈ � 7 suggests that
it is not only timing of the swallows which drives the clustering,
but significant contribution is provided by CPS and TPS features
characterizing chewing and swallowing process.

When performing the classification of swallows of different food
items with a priori knowledge of the number of food items, AHC and
AP achieved very similar accuracies (Fig. 6). Association of swal-
lows into groups may  result in an accurate mean to measure the
total consumed mass of a subject, due to the constant bite size
within similar foods [23], and the significant correlation between
the number of swallows and the mass ingested by subject [10].
Water swallow classification resulted in the highest accuracy for
both methods. The high frequency of swallowing in liquids, which
results in lower TPS values, but particularly in the zero values of the
CPS due to the absence of chewing, may  explain why the highest
accuracy was  obtained in this case.

Also, fairly good accuracy was  obtained for pizza and yogurt,
since the transition from one to the other results in significant
changes in the TPS and CPS features. On the other hand, distinc-
tion between apple and peanut butter swallows resulted in a lower
accuracy which can be explained by similarity of their TPS and CPS
characteristics across all subjects.

The high accuracy evidence for efficiently separating swallows
of pizza from yogurt, and peanut butter from water, suggests that
the methodologies described in this study may  be used in more gen-
eral cases under free-living conditions where differences between
segments within a meal are significant. Additionally, the significant
differences in the TPS and CPS signals may  result useful in build-
ing models that identify the types of foods consumed, i.e. solid,
semi-solid and/or liquid intake within a meal.

The features ti, TPS and CPS used in this study were obtained
from manual scores of sound recordings of swallows and strain
sensor signal of chews, but they may  potentially be obtained from
automatic scores of swallowing and chewing detection methods
that would enable creation of a wearable device [11]. This is part of
our ongoing research goals.

One limitation of the reported study is that food items were con-
sumed unmixed and in a specific order, which allowed to eliminate

uncertainty in inter-food variation of food properties. In free-living
conditions, the number and type of food items within a meal will
vary according to subject’s behavior and preferences [29]. Further
study is needed to test the clustering algorithms performance on
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ig. 6. Results obtained on the classification of swallows from the Affinity Propaga

nrestricted meals. However, the presented clustering approaches
hould be directly applicable to unrestricted meals as food intake
s cumulative over time [30] and consumption normally happens
equentially in a bite-by-bite manner, similar to the meal in this
tudy.

The proposed methodology is a first step toward the automatic
eal segmentation that could eventually be used in the study of

ating disorders, obesity, and in biofeedback applications aimed
t managing and monitoring ingestive behavior with unconstraint
onditions, i.e. time of food intake, number of food types consumed
nd the order of consumption.

. Conclusion

Two models for automatic meal segmentation into distinct food
tems were proposed and evaluated on data collected from 17 sub-
ects. An overall accuracy of >95% was obtained when estimating
he number of food items in a meal using the implemented model
ased on supervised Agglomerative Hierarchical Clustering, com-
ared to a 90% of the unsupervised Affinity Propagation model.
xperimental results suggest that these features may be used as
redictors of the composition of food items within a meal. The
roposed models may  be advantageous for development of an
ccurate, inexpensive, and non-intrusive methodology for objec-
ive monitoring of food intake in free living conditions.
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