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Abstract 

Our understanding of the etiology of obesity and overweight is incomplete due to a lack 

of objective and accurate methods for monitoring ingestive behavior in the free living 

population. As a step toward such monitoring, an objective and automatic approach to 

detect periods of food intake based on data from non-invasive and wearable swallowing 

sensor is proposed. Our research has shown that the frequency of swallowing may be 

used to detect food intake. Therefore, an automatic swallowing detection methodology 

was proposed to produce time series of automatically detected swallows, which can 

further be used to detect and characterize food intake. This methodology should be 

suitable for obese subjects and able to separate swallowing sounds from sounds that 

originate from respiration, intrinsic speech, head movements, food intake, and ambient 

noise. In this dissertation the feasibility of artifact elimination with an acoustical 

swallowing detection method is described. An automatic swallowing detection 

methodology that meets the aforementioned requirements is proposed. It was tested on a 

large database collected from individuals with various degrees of adiposity during 

periods of food intake and resting, in conditions resembling free-living. Automatically 

detected swallows are further used to detect periods of food intake in both personalized 

and non-personalized models. These models can be directly implemented in a wearable 

device. Such a device can potentially be used in free-living conditions improving our 

understanding of eating behaviors associated with obesity and other eating disorders and 

providing the real-time biofeedback to individuals. To the best of our knowledge, this is 

the first attempt of fully automatic detection of food intake based on data from a wearable 

non-invasive swallowing sensor. Experimental results suggest efficiency and reliability of 
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the proposed automatic swallowing detection methodology and its potential for 

monitoring of ingestive behavior based on swallowing.  
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1. Introduction 

The obesity epidemic has been suggested as a primary cause for a potential decline in US 

life expectancy [Olshansky et al. 2005]. In 2005, over 40% of Americans were obese 

with Body Mass Index (BMI) of more than 30 and over 73% were overweight with BMI 

of more than 25 [WHO 2006]. Obesity contributes to an increased risk of heart disease, 

hypertension, diabetes, and some cancers [Carmelli et al. 1997, James 1998] and is now 

considered a risk factor for cardiovascular disease [Eckel and Krauss 1998]. Millions of 

Americans are attempting to lose weight at any time, but the rate of success at preventing 

weight regain is only 5-20% [Wyatt and Hill 2002]. 

The modern lifestyle is the most probable cause of obesity epidemic. We are surrounded 

by inexpensive, available, highly palatable and highly caloric food. At the same time the 

level of physical activity is significantly reduced in comparison to just several decades 

ago. Recent research indicates that control of food intake may be the primary factor for 

maintaining a healthy weight in such an environment [Flatt 1996]. 

At the present time, there is no accurate, inexpensive, non-intrusive way to objectively 

monitor food intake behavior in free living conditions. 

Several methods have been proposed to measure food intake including observation, 

weighed food records, estimated records, diet history, food-frequency questionnaires, 

food recall methods, and others. Indirect measurement of food intake through the use of 

doubly-labeled water [Schoeller 1988] has been used as a gold standard to assess other 

methods for measuring energy intake [Livingstone and Black 2003]. In a review of 43 



 2 

studies comparing these methods to doubly-labeled water, the majority suffers from 

underestimation of energy intake on the order of 0.84 (ratio of estimate to actual intake) 

[Livingstone and Black 2003]. Observation gives the best agreement, but is expensive 

and may not be representative of the typical behavior of the subjects.  All of the methods 

based on self-reporting have significant under-estimation [Mertz et al. 1991, Subar et al. 

2003, Prentice et al. 1989, Weber et al. 2001, Champagne et al. 2002] due to many 

factors, including under-reporting, under-eating, recording burden, psychological and 

behavioral aspects. 

While methods utilizing doubly-labeled water are considered accurate and can be used 

for free-living individuals, they are expensive, difficult to use for large studies, and 

provide an integrated measure of energy intake across subjects and across a period of 

weeks that does not allow measurement of daily, individual energy intake patterns. On 

the other hand, individual methods may provide a good estimate of portions of energy 

intake, but lack information on the specific patterns of food intake throughout the day. 

For example, one study showed that meal intake is reported well in contrast to snacks 

[Poppitt et al. 1998], while others show other differences. In summary, comparison of 

food intake measures, particularly those designed for free living individuals, suffer from 

significant under-estimation which is related to the characteristics of the subjects 

themselves and also to the patterns of the food they ingest.  

People who would like to monitor and possibly lose weight would love to have a device 

that can objectively monitor their ingestive behavior over time and use this device for 

behavioral modification programs. Our long term goal is the development of an 
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affordable wearable device to non-invasively detect instances of swallowing (deglutition) 

in free living individuals as a way to objectively determine when and how often food 

consumption is taking place. Focusing on monitoring of ingestive behavior, an important 

task is to identify bouts of food-related swallowing as a means of quantifying the number 

and length of eating periods per day. The target device should not require special fitting 

of the sensors and should not exceed the capabilities of a typical low-power embedded 

processor. Such a device would be suitable for free living individuals who are not 

required to cooperate in the reporting of food consumption beyond the wearing of the 

device and may be used for both advising individuals about moderating their food intake 

in the same way pedometers are used for behavioral modifications related to energy 

expenditure and in research and clinical applications to study behavioral patterns of food 

consumption related to obesity and other eating disorders.  

Specifically, such a device is envisioned to consist of two components: a wireless 

component including a microphone and wireless transmitter will capture the swallowing 

sounds and send the sound signals to a second component, a portable device, such as a 

cell phone, iPod, or PDA. The second component will process the sounds, distinguish 

between swallows/non-swallows, and determine bouts of eating. 

Our recent research [Sazonov et al. 2009b] has shown that frequency of swallowing can 

serve as a predictor for accurate detection of food intake, differentiation between liquid 

and solid foods and estimation of ingested mass, with high frequency of swallowing 

being indicative of ingestion. Therefore, to create the envisioned device, there is a need 

for an automatic swallowing detection methodology that would be suitable for obese 
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subjects and would be able to separate swallowing sounds from sound artifacts that 

originate in talking, head movements, food ingestion, respiration, etc. With such 

methodology algorithms presented in [Sazonov et al. 2009b] can be applied as the second 

step of processing to detect and characterize food intake from the time series of 

automatically detected swallows. 

In this dissertation the feasibility of artifact elimination with an acoustical swallowing 

detection method is shown and an automatic swallowing detection method is proposed 

and tested on a large database collected from 20 individuals with various degrees of 

adiposity during periods of food intake and resting in conditions resembling the free-

living. Automatically detected swallows are further used to detect periods of food intake 

in both personalized (intra-subject) and non-personalized (inter-subject) models that can 

be directly implemented in the envisioned device. Experimental results suggest efficiency 

and reliability of the proposed methodology and its potential for monitoring of ingestive 

behavior based on swallowing.  

This dissertation is organized as follows: In chapter 2 the background on assessment of 

swallowing sound signals and currently used swallowing detection methods is presented. 

In chapter 3 the feasibility of acoustical artifact elimination with a swallowing detection 

method is shown. Description of the human study and collection of data that was used to 

validate automatic swallowing and food intake detection methodologies is presented in 

chapter 4. Chapters 5 and 6 contain more specific background, description and testing 

results obtained for automatic swallowing and food intake detection methodologies 
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correspondingly. Overall conclusions summarizing the unique contributions of this 

dissertation and an overview of future work are presented in chapter 7. 
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2. Swallowing Detection Background 

At present, various non-invasive methods are proposed for swallowing assessment based 

on digital signal processing techniques [Das et al. 2000, Lazareck and Moussavi 2002, 

Lazareck and Moussavi 2004, Aboofazeli and Moussavi 2004, Aboofazeli and Moussavi 

2005, Aboofazeli and Moussavi 2006]. Some of these works concentrate on 

differentiating between individuals with and without swallowing dysfunction or 

dysphagia [Das et al. 2000, Lazareck and Moussavi 2004, Aboofazeli and Moussavi 

2005] while others are focused on automated decomposition of tracheal sounds into 

swallowing and respiratory segments [Lazareck and Moussavi 2002, Aboofazeli and 

Moussavi 2004, Aboofazeli and Moussavi 2006]. 

In [Das et al. 2000] two sets of hybrid fuzzy logic committee neural networks (FCN) 

were proposed for recognition of dysphagic swallows, normal swallows and artifacts 

(speech, head movement) and tested on data obtained from two groups of 12 normal and 

16 dysphagic subjects. The subjects in the upright position were administered small 

quantities of food as determined by the clinician and were asked to swallow on 

command. Five features (number of zero crossings, average power, average frequency, 

maximum power, and frequency at maximum power) were used as inputs of the FCN. 

Recognition rate of 97.1% was obtained.  

In [Lazareck and Moussavi 2004] and [Aboofazeli and Moussavi 2005] two methods of 

classification of normal and dysphagic swallows are proposed. Both methods are tested 

on the data obtained from two groups of 15 normal and 11 dysphagic subjects. Subjects 

were fed three textures: “semisolid”, “thick liquid”, and “thin liquid”. A total of 350 
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swallowing signals were utilized. In [Lazareck and Moussavi 2004] eleven features, 

including waveform dimension, magnitude, and average power calculated for different 

frequency bands were used. Discriminant analysis was performed for classification of 

normal and dysphagic swallowing sound signals for each texture. In [Aboofazeli and 

Moussavi 2005] four features including optimum time delay and correlation dimension of 

the opening and transmission phases were used as input to 3-nearest neighbor classifier. 

In both studies, the subject was classified as dysphagic if more than 50% of his/her 

swallows were classified as dysphagic and not dysphagic otherwise. Both methods 

[Lazareck and Moussavi 2004] and [Aboofazeli and Moussavi 2005] were able to classify 

swallows correctly in 24 out of 26 subjects.  

The disadvantage of [Das et al. 2000, Lazareck and Moussavi 2004, Aboofazeli and 

Moussavi 2005] is time-consuming and subjective manual extraction of swallowing 

signals from the recordings through repeated listening and monitoring of the signal in the 

time and frequency domains. Several methods for automatic detection of swallowing 

signals in the tracheal sound signal have been proposed [Lazareck and Moussavi 2002, 

Aboofazeli and Moussavi 2004, Aboofazeli and Moussavi 2006].  

In [Lazareck and Moussavi 2002] utilization of three tracheal sound features including 

autoregressive coefficients, root-mean-square values of the signal in time domain, and the 

average power of the signal within different frequency bands was proposed. The method 

was tested on six respiratory and swallowing sound recordings obtained from healthy 

subjects. Three features were used for preliminary classification based on cluster analysis 

and 95% confidence interval thresholds. Definitive classification was performed by a 
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“smart” algorithm simulating the trained physician tracking patterns within the sound 

signal.  The recognition rate of 78.54% was obtained.  

In [Aboofazeli and Moussavi 2004] a method based on multilayer feed forward neural 

networks was proposed. The method was tested on 18 tracheal sound recordings (with an 

average length of 40 seconds) for 7 healthy subjects. During the data collection process 

all participants were fed thin liquid in separate boluses of fixed size resulting in a total of 

253 swallows. Root-mean-square values, waveform fractal dimension, and average power 

of the signal over 150-450Hz were calculated for each signal segment, 5 preceding 

segments and 5 following segments, along with the mean values for each feature for all 

11 segments were used as input to the multilayer feed forward neural network with one 

hidden layer of 9 neurons. The average rate of missed swallows and false swallow 

detections were of 8.3% and 9.5% respectively.  

In [Aboofazeli and Moussavi 2006] a discrete wavelet transform based filter with 

iterative sequences of multiresolution decomposition and reconstruction is proposed. The 

data for this study were adopted from [Lazareck and Moussavi 2004]. An average 

recognition rate of 93% was obtained with an average rate of missed swallows and false 

swallow detections of 4% and 3% respectively. 

These methods [Lazareck and Moussavi 2002, Aboofazeli and Moussavi 2004, 

Aboofazeli and Moussavi 2006] have limitations.  

First, all of the aforementioned methods are based on utilization of accelerometers placed 

over the suprasternal notch of the trachea for data collection. While direct application of 
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accelerometers to detect swallows in obese people was not evaluated there is some 

indirect indication that sensors detecting larynx and laryngeal prominence movements 

may not be reliable for obese people. For example, in [Pehlivan et al. 1996] a 

piezoelectric strain sensor held in place between the cricoid and the thyroid cartilages by 

a band of elastic material is proposed for measurement of frequency of spontaneous 

swallowing. The sensor detected upward and downward motion of the larynx produced 

by swallowing. Reported data indicate that a laryngeal strain sensor is not appropriate for 

obese subjects, since under chin fat pads inhibit reliable detection of swallows. 

Furthermore, in [Lear et al. 1965] the authors reported failure of a pneumatic method to 

detect swallowing in subjects where “a mass of soft tissue overlay the laryngeal 

prominence and masked the surface disturbance caused by its movements”. They also 

reported successful experimentation with an acoustical method that detected “a short 

sharp noise … on the skin lateral to the laryngeal prominence” and pointed out that 

“when detected by instruments of suitable sensitivity, the swallowing sound, regardless 

of its intensity, can be readily distinguished from other noises heard in the area, such as 

intrinsic sounds of speech, belching, coughing and snoring, and the extrinsic sounds 

generated by movements of clothes, sheets, etc. against the recording device” which 

suggests reliability of sound sensors for obese people.  

Second, all of the proposed methods for automated detection of swallowing [Lazareck 

and Moussavi 2002, Aboofazeli and Moussavi 2004, Aboofazeli and Moussavi 2006] 

have only assessed separation of swallowing segments from respiratory segments and 

rely heavily on characteristics of breath sounds. For example, the methodology that 

yielded the best average recognition rate of 93% [Aboofazeli and Moussavi 2006] is 
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based on assumption that “as swallowing sounds have more non-stationarity compared 

with breath sounds, they have larger components in many wavelet scales whereas wavelet 

coefficients of breath sounds in higher wavelet scales are small” suggesting potential 

vulnerability of this method to non-stationary artifacts. In practical situations artifacts 

such as talking, throat clearing, head movements, etc., may be confused with swallowing 

and breath, decreasing the efficiency of the recognition [Das et al. 2000]. In [Lazareck 

and Moussavi 2002] the authors state that “all the swallowing ‘click’ sounds were 

classified correctly but some segments within the swallowing sections as well as some 

segments in forceful expiration sections were misclassified (especially for segments that 

were neither breathing nor swallowing but included a noise due to tongue movement)” 

indicating vulnerability of the methodology to artifacts. Furthermore, these studies did 

not take into account sound artifacts that originate from food ingestion (bites, chewing, 

etc.) elimination of which is very important for monitoring of the ingestive behavior 

under free living conditions.  

Finally, the description of all the proposed automated swallowing detection methods 

[Lazareck and Moussavi 2002, Aboofazeli and Moussavi 2004, Aboofazeli and Moussavi 

2006] lacks a clear indication on whether the recognition rates are reported for group or 

individual models and how the dataset was divided for training and validation which is 

very important for evaluation of the suitability of the method for creation of a monitoring 

device. Based on the given information one can assume that all the results are reported 

for group models using leave-one-out cross-validation with the recognition rate averaged 

across subjects. 
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Therefore, it can be seen that there is a strong need for an automatic swallowing detection 

method that would be suitable for obese subjects and would be able to separate 

swallowing sounds from sound artifacts that originate in talking, head movements, food 

ingestion, and respiration. In order to allow creation of a wearable monitoring device, this 

method should be noninvasive, not require special fitting of the sensors and it should not 

exceed the capabilities of a typical low-power embedded processor. 
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3. Feasibility of Artifact Elimination with an Acoustical 
Swallowing Detection Method  

Related publications: 

• Makeyev O, Sazonov E, Schuckers S, Melanson E and Neuman M (2007a) 
“Limited receptive area neural classifier for recognition of swallowing sounds 
using short-time Fourier transform” Proc. Int. Joint Conf. on Neural Networks 
IJCNN’2007 (Orlando, USA) 1417.1-6. 

• Makeyev O, Sazonov E, Schuckers S, Lopez-Meyer P, Melanson E and Neuman 
M (2007b) “Limited receptive area neural classifier for recognition of swallowing 
sounds using continuous wavelet transform” Proc. of 29th Annual Int. Conf. of 
the IEEE Engineering in Medicine and Biology Society EMBC’2007 (Lyon, 
France) 3128-31. 

• Makeyev O, Sazonov E, Schuckers S, Lopez-Meyer P, Baidyk T, Melanson E and 
Neuman M (2008b) “Recognition of swallowing sounds using time-frequency 
decomposition and limited receptive area neural classifier” Proc. of 28th SGAI 
Int. Conf. on Innovative Techniques and Applications of Artificial Intelligence 
(Cambridge, UK) 33-46. 

 

In this chapter the ability to recognize swallow signals and eliminate artifacts with high 

accuracy using a novel acoustical swallowing sound recognition technique combining the 

limited receptive area (LIRA) neural classifier with two time-frequency decomposition 

methods, short-time Fourier transform (STFT) and continuous wavelet transform (CWT ) 

is demonstrated [Makeyev et al. 2007a, Makeyev et al. 2007b, Makeyev et al. 2008b]. 

The novelty of the proposed technique consists of the following: time-frequency 

decomposition methods commonly used in sound recognition increase dimensionality of 

the signal and require steps of feature selection and extraction. Usually feature selection 

is based on a set of empirically chosen statistics, making the pattern recognition 

dependent on the intuition and skills of the investigator. A limited set of extracted 

features is then presented to a classifier. The proposed method avoids the steps of feature 
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selection and extraction by delegating them to a LIRA neural classifier that utilizes the 

increase in dimensionality of the signal to create a large number of random features in the 

time-frequency domain that assure a good description of the signal without prior 

assumptions of the signal properties. Features that do not provide useful information for 

separation of classes do not obtain significant weights during classifier training. 

The LIRA neural classifier was developed as a multipurpose image recognition system 

[Kussul et al. 2006] and tested with promising results in different image recognition tasks 

including: handwritten digit image recognition [Kussul and Baidyk 2004], micro device 

assembly [Baidyk et al. 2004], mechanically treated metal surface texture recognition 

[Makeyev et al. 2008a], face recognition [Kussul et al. 2004], micro work piece shape 

recognition [Kussul et al. 2006] and recognition of postural allocations [Sazonov et al. 

2007]. Application of the LIRA-based image recognition technique to a two-dimensional 

power spectrum, such as a spectrogram in case of a short-time Fourier transform (STFT) 

or a scalogram in case of continuous wavelet transforms (CWT) is presented below. 

3.1. Data Collection and Preprocessing 

A commercially available miniature throat microphone IASUS NT (IASUS Concepts 

Ltd.) located over the laryngopharynx was used during the data collection process. Throat 

microphones convert vibration signals from the surface of the skin rather than pick up 

waves of sound pressure, thus reducing the ambient noise. Throat microphones also pick 

up such artifacts as head movements and talking that should not be confused with 

swallowing sounds.  
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Twenty sound instances were recorded for each of three classes of sounds (swallow, 

talking, head movement) for a healthy subject without any history of swallowing 

disorders, eating or nutrition problems, or lower respiratory tract infection. To record the 

swallowing sound the subject was asked to consume water in boluses of arbitrary size. 

For head movement artifact recording the subject was asked to turn his head to a side and 

back. To record the speech artifact the subject was asked to say the word “Hello”. Sound 

signals for each class were amplified and recorded with a sampling rate of 44100 Hz. 

A fourth class of outlier sounds that consisted of random segments of music recordings 

was introduced to demonstrate the ability of the neural classifier to reject sounds with 

weak intra-class similarity and no similarity with the other three classes.  

Next, swallowing, head movement, and talking sounds were extracted from the 

recordings in segments of 65536 samples (approximately 1.5 s) each using the following 

empirical algorithm: the beginning and end of each sound were found using a threshold 

set above the background noise level; then the center of mass was calculated for each 

sound and used to center the corresponding sound instance in the recognition window. 

Spectrograms of each segment were calculated with a window of 512 samples extracted 

using a Hanning window function and processed by STFT with 50% window overlap. 

Due to the limited signal bandwidth higher frequencies do not contain significant energy 

of the original time domain signal and can be eliminated from the spectrogram. 

Truncating the spectrogram from 512x256 pixels to 256x256 pixels preserves most of the 

signal energy and eliminates insignificant harmonics. Scalograms of each segment were 

calculated with a Morlet mother wavelet with wavenumber of 6, 7 octaves and 16 
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suboctaves. To compare pattern recognition accuracy on time-frequency decompositions 

produced by CWT and STFT the following processing was applied to the scalograms: a 

mirror image of the scalograms across the abscissa was created and combined with the 

original; the resulting image was resized to 256x256 pixels using bicubic interpolation. 

Eighty grayscale spectrogram images (20 for each of 4 classes) comprise the first image 

database that was used in training and validation and eighty grayscale scalogram images 

(20 for each of 4 classes) comprised the second image database. Examples of 

spectrogram and scalogram images are presented in Fig. 1 and Fig. 2 allowing the direct 

visual comparison to be drawn. 

 

Figure 1: Examples of spectrograms of (columns): a) swallowing sounds, b) talking, c) 
head movements, d) segments of music recordings. 
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Figure 2: Examples of scalograms of (columns): a) swallowing sounds, b) talking, c) 
head movements, d) outlier sounds. 

3.2. LIRA Neural Classifier 

The LIRA neural classifier is a multi-layer perceptron that consists of S-layer, I-layer, A-

layer and R-layer (Fig. 3). 

 

Figure 3: Structure of the LIRA neural classifier. 
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Sensor S-layer corresponds to the input image. Associative A-layer is connected to the S-

layer through the intermediate I-layer with randomly selected non-trainable connections. 

The set of these connections can be considered as a feature extractor. Intermediate I-layer 

that consists of ON- and OFF-neurons is designed to work with grayscale images. The 

input of each I-layer neuron is connected to one neuron of the S-layer and the output is 

connected to the input of one neuron of the A-layer. All the I-layer neurons connected to 

one A-layer neuron form the group of this A-layer neuron. For example, in Fig. 3 the 

group of four I-layer neurons, two ON-neurons and two OFF-neurons, corresponds to one 

A-layer neuron. Reaction R-layer contains neurons that correspond to output classes of 

the LIRA classifier. Each neuron of the A-layer is connected to all the neurons of the R-

layer. The weights of these connections are modified during the classifier training.  

The fixed set of connections between the S-layer and the A-layer is created with the 

following procedure repeated for all the A-layer neurons: the window of height h and 

width w is randomly located in the S-layer; inputs of a group of I-layer ON- and OFF-

neurons are connected to random neurons within the window h · w of the S-layer and 

outputs are connected to the A-layer neuron; the thresholds of ON- and OFF-neurons are 

selected randomly from the range [0, bmax], where bmax is the maximal brightness of 

image pixels. 

Each input image defines unique activations of the A-layer neurons. After the set of 

connections between the S-layer and the A-layer is created, the binary vector that 

represents outputs of associative neurons is calculated for each image of training and 

validation sets in accordance to following rules: 
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1. The output of the ON-neuron is equal to 1 if its input value is larger than its threshold 

and it is equal to 0 in the opposite case. The output of the OFF-neuron is equal to 1 if its 

input value is smaller than its threshold and it is equal to 0 in the opposite case.  

2. The output of the A-layer neuron is equal to 1 if outputs of all the neurons of its I-layer 

group are equal to 1 and it is equal to 0 in the opposite case. 

These binary vectors will be used during training and recognition procedures.  

Training and recognition procedures of the LIRA neural classifier are similar to the ones 

of the perceptron. The training process is carried out iteratively. In each training cycle all 

the images of the training set are presented to the neural classifier. During the recognition 

process all the images of the validation set are presented to the neural classifier.  

Image recognition performance of a LIRA neural classifier can be improved with 

implementation of distortions of input images during training and recognition [Kussul et 

al. 2006]. Different combinations of horizontal, vertical and bias translations of the 

spectrograms and scalograms were used in our experiments. 

3.3. Experimental Results 

Holdout cross-validation was used in our experiments, i.e. the validation set for each 

class was chosen randomly from the database and the rest of the database was used for 

training. In each experiment 50 runs of the holdout cross-validation were performed to 

obtain statistically reliable results. A new set of connections between the S-layer and the 

A-layer and a new division into the training and validation sets were created for each run. 
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The number of sounds in training and validation sets for each class equals ten, i.e. the 

database is divided in half. 

The mean recognition rate was calculated from the mean number of errors for one run 

and the total number of sounds in the validation set. Comparison of recognition rates 

obtained with combination of LIRA with CWT and STFT for various numbers of 

associative neurons is presented in Table 1.  

The following set of LIRA parameters was used during all the experiments: window h · w 

width w = 10, height h = 10; the number of training cycles is 30; the number of ON-

neurons in the I-layer neuron group that corresponds to one A-layer neuron is 3, the 

number of OFF-neurons is 5; 8 distortions for training including ±1 pixel horizontal, 

vertical and bias translations and 4 distortions for recognition including ±1 pixel 

horizontal and vertical translations. Near optimal values of all the aforementioned 

parameters were determined empirically.  

Table 1: Comparison of recognition rates for combination of LIRA with CWT and STFT 
Mean recognition 

rate (%) 
Number of 
associative 

neurons CWT STFT 

P-value for paired t-
test for mean 

recognition rate 

95%  lower bound 
for mean difference 

1,000 85.3 81.75 0.02 0.72 
2,000 96.5 94.25 0.002 1.039 
4,000 99.6 98.1 < 0.001 0.926 
8,000 100 99.85 0.042 0.0078 

The paired t-test [Montgomery 2004] for mean recognition rate was used to evaluate the 

significance of the difference in recognition rates for CWT and STFT with null 

hypothesis of no difference in recognition rates and alternative of mean recognition rate 

for CWT being higher than the one for STFT. P-values and 95% lower bounds for mean 
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difference are presented in Table 1 indicating a statistically significant improvement in 

the recognition rate. 

3.4. Discussion 

The obtained results suggest the feasibility of the elimination of artifacts with an 

acoustical swallowing detection method as well as the superiority of the combination of 

LIRA with CWT over the combination of LIRA with STFT, though tests on a larger 

database would be needed for a conclusive proof. An important advantage of the 

proposed method is utilization of a double-redundant approach to identification of 

significant features. First, the time-frequency decomposition method provides a 

redundant description of a sound instance, therefore increasing the chances for random 

selection of a significant feature. Second, randomly assigned redundant connections 

between the sensor and associate layers ensure multiplicity of extracted random features. 

The proposed methodology eliminates the need for a separate feature selection and 

extraction algorithms and presents a novel deviation from the traditional approach of 

using small sets of empirically-selected statistics as features in sound recognition.  

Higher accuracy achieved in classification of CWT data can be attributed to the tiling of 

the resolution. Time-frequency resolution of STFT is constant which results in the 

uniform tiling of the time-frequency plane with a rectangular cell of fixed dimensions. 

For CWT the time-frequency resolution varies according to the frequency of interest. 

CWT resolution is finer at higher frequencies at the cost of a larger frequency window 

while the area of each cell is constant. Hence, CWT can discern individual high 
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frequency features located close to each other in the signal, whereas STFT smears such 

high frequency features occurring within its fixed width time window [Addison 2002]. 

The method presented here achieves similar or higher accuracy compared to previously 

published methods. The advantage of this approach is that our method of feature 

extraction is automated. This has two main advantages. The first is that our method is not 

necessarily tailored to a specific collected dataset. That is, often in applications, features 

that are chosen manually from one dataset may achieve high performance for that dataset, 

but are not generalizable to the underlying application. The second is that manually 

chosen features may not achieve the best performance because potentially useful features 

for classification may have been overlooked. More research is needed to assess the 

generalizability and performance with this method of classifying swallowing sounds 

compared with other approaches. 

The drawback of the proposed method is that it turned out to be very computationally 

intensive both in terms of data preprocessing and classification exceeding the capabilities 

of a typical low-power embedded processor and thus cannot be easily adapted for a 

wearable device for monitoring of the ingestive behavior. For example, computing CWT 

for a 20-minute long meal takes almost a day of processing on a computer equipped with 

an AMD Athlon 64 X2 4400+ Dual Core processor and 2.00 GB of RAM. Furthermore, 

the number of extracted random features which is equal to the total number of associative 

neurons is a crucial parameter of the system. This is reflected in the experimental results 

presented in Table 1. This number should be sufficiently large to create a detailed 

description of a sound instance providing a basis for further classification. At the same 



 22 

time the large number of associative neurons results in a computational burden that may 

pose additional problems for our long term goal application. For example, in order to 

achieve an accuracy of more than 75% in automatic recognition on data from our final 

database (described in detail below) the number of associative neurons on the order of 

500K was needed which makes recognition of swallowing instances in sound with the 

highest recognition rate in a real-time conditions problematic. Even with time-frequency 

decomposition spectra images resized to only 64x64 pixels using bicubic interpolation 

detection of swallowing instances on data representing approximately 20-minute long 

meals for 10 subjects took almost a week of processing on the aforementioned computer. 

Decreasing the size of the spectra resulted in average per-epoch accuracy of 93.06% 

obtained for individual models where the training dataset was selected in the following 

way: the total number of swallows per subject was rounded down to the closest number 

divisible by 10 and this divisible number of swallow spectra images was chosen 

randomly from the total number of swallow images with the same number of non-

swallow images being chosen randomly from the total number of non-swallow images.   

Given the slow performance and high computational burden of the combination of CWT 

with a LIRA neural classifier, a new light-weight sound recognition methodology based 

on a combination of Wavelet Packet Decomposition (WPD), mel-scale Fourier Spectrum 

(msFS) and Support Vector Machines (SVM) was proposed. 

3.5. Conclusion 

In this chapter a novel swallowing sound recognition technique based on the limited 

receptive area (LIRA) neural classifier and time-frequency decomposition was proposed. 
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The proposed technique works by applying a LIRA-based multipurpose image 

recognition system to the time-frequency decomposition spectrums of sound instances 

with extraction of a large number of random features. Features that do not provide useful 

information for separation of classes do not obtain significant weights during training. 

This approach eliminates the need for empirical feature selection and therefore simplifies 

the design of pattern recognition systems for non-stationary signals such as swallowing 

sounds.  

The proposed methodology was tested with two different algorithms of time-frequency 

decomposition, short-time Fourier transform (STFT) and continuous wavelet transform 

(CWT), in recognition of four classes of sounds that correspond to swallowing sounds, 

talking, head movements and outlier sounds. Experimental results suggest the feasibility 

of the elimination of artifacts with an acoustical swallowing detection method, efficiency 

and reliability of the proposed method and the superiority of the combination of LIRA 

with CWT over the combination of LIRA with STFT. The drawback of the proposed 

method is its high computational burden. 

The proposed multipurpose sound recognition technique may be employed in systems for 

automated swallowing assessment and has the potential for application to other sound 

recognition tasks. 
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4. Human Study and Data Collection Process 

Related publications: 

• Sazonov E, Schuckers S, Lopez-Meyer P, Makeyev O, Sazonova N, Melanson E, 
Neuman M (2008) “Non-invasive monitoring of chewing and swallowing for 
objective quantification of ingestive behavior” Physiological Measurement, 
29:525-541. 

• Sazonov E, Schuckers S, Lopez-Meyer P, Makeyev O, Sazonova N, Melanson E, 
Neuman M (2009a) “Reply to 'Comment on Non-invasive monitoring of chewing 
and swallowing for objective quantification of ingestive behavior'” Physiological 
Measurement, 30:L5-L7. 

 

In this chapter, the human study that was performed to collect the data needed to validate 

the proposed swallowing and food intake detection methodologies is described. Major 

contributions made by the author of this dissertation to the data collection process 

included: initial testing of the set-up and several variations of microphones and strain 

sensors in different combinations, final selection of sensors for the study and creation of 

data collection protocol. The author also actively participated in conductance of the 

human study and data collection. 

Multi-modal data collection system was designed for non-invasive monitoring of 

chewing and swallowing [Sazonov et al. 2008, Sazonov et al. 2009a]. Monitoring is 

based on detecting swallowing by a microphone located over the laryngopharynx or by a 

bone conduction microphone and detecting chewing through a below-the-ear strain 

sensor (Fig. 4). A strain sensor will detect specific motion of the lower jaw by capturing 

strains created by motion of the posterior border of the mandible’s ramus relative to the 

temporal bone (Fig. 4). 
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Figure 4: Suggested sensor locations. 
 

First, a system comprised of sensors, related hardware and software for multi-modal data 

capture was designed for data collection in a controlled environment. Second, a protocol 

was developed for manual scoring of bites, chews, and swallows for the collected data for 

use as a gold standard. The multi-modal data capture was tested by measuring chewing 

and swallowing in twenty one volunteers during periods of food intake and quiet sitting 

(no food intake). Video footage and sensor signals were manually scored by trained 

raters. An inter-rater reliability study for three raters conducted on the sample set of 5 

subjects resulted in high average intra-class correlation coefficients of 0.996 for bites, 

0.988 for chews, and 0.98 for swallows for the epoch duration of 120s. The collected 

sensor signals and the resulting manual scores were used as a gold standard in testing of 

the automatic swallowing detection methodology utilizing only the information from the 

wearable sensors and study of the relationship between swallowing/chewing and 

ingestive behavior. 
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4.1. Sensors 

Four models of commercially available miniature microphones were tested as the sensing 

devices. The first model was a piezoelectric bone-conduction microphone EM-L (Temco 

Inc). This microphone can be modified to be placed on the mastoid bone behind the ear 

or used as an ear probe. The second model was a piezoelectric noise-canceling 

microphone model N4530 (Challenge Electronics). The third model was a modified 

throat microphone XTM70V (iXradio) usually used for hands-free radio 

communications. Throat microphones convert vibration signals from the surface of the 

skin rather than pick up waves of sound pressure, thus reducing the ambient noise. The 

fourth model was a miniature IASUS NT (IASUS Concepts Ltd) throat microphone. This 

microphone provides a dynamic range of 46 ± 3 dB with a frequency range of 20 Hz to 

8000 Hz. Youmans (2003) reported the peak frequency of swallowing to be in the range 

of 1083.02 Hz to 3286.73 Hz, therefore this microphone is capable of acquiring 

swallowing sounds.  

The microphone tests consisted of recording several consecutive swallows with 

subsequent evaluation of sound quality. Sound quality was evaluated both subjectively 

(i.e. by listening to the recording) and objectively (by visualizing in a sound editor and 

computing the signal-to-noise ratio). While all four microphones were able to detect 

swallowing sounds, the throat microphones showed a lower degree of sensitivity to 

ambient noise. Based on the results of testing, the IASUS microphone was selected for 

data collection because of its higher sensitivity to swallowing sounds and low noise (Fig. 

5).  
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a) 

 

b) 

 

c) 

Figure 5: a) IASUS NT throat microphone, b) time series and spectrogram of consuming 
5 peanuts with 3 swallows, c) time series and spectrogram of a gulp of water of arbitrary 

size. 
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Several configurations of below-the-ear strain sensors for chewing detection were 

developed and tested. Evaluated types of sensors included foil strain gauges and a 

piezoelectric sensor.  

Testing the strain sensors consisted of three distinct activities: orally counting to ten, 

drinking 50 ml of water and eating a cracker. Different sensors and configurations were 

evaluated with regard to sensitivity to the characteristic chewing motion and an ability to 

reject anterior-posterior and medial-lateral head tilts. While all sensor types are able to 

detect characteristic jaw motion due to chewing, the sensor configurations using foil 

strain gauges showed a higher degree of sensitivity to the subject’s head motion which 

was especially evident for head tilting during drinking. Based on the results of the testing, 

a piezoelectric film sensor (MSI Inc) was selected to be used for the data collection. 

Attached by medical tape to the area immediately below the outer ear, this sensor is able 

to detect changes in the skin curvature created by the characteristic motion of the 

mandible relative to the temporal bone during chewing and bites. 

The final set of sensors consisted of: (1) an IASUS throat microphone located over the 

laryngopharynx to detect swallowing, (2) a microphone directed outwards to detect 

ambient sounds, (3) a throat microphone located on the mastoid bone to detect 

swallowing, (4) a piezoelectric strain sensor attached by medical tape immediately below 

the outer ear to detect chewing, and (5) an in-ear microphone XEM98D (iXradio) to 

detect swallowing.   

The block diagram of the system for multi-modal data collection is presented in Fig. 6. 
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Figure 6: Block diagram of the multi-modal data collection system.  
 

Microphone signals were amplified by a custom-built pre-amplifier with a variable gain 

in the range 20 dB to 60 dB. The gain of the amplifier was set experimentally for each 

sound channel to reliably capture the subtle sounds of swallowing without saturating the 

amplification circuits during normal speech and fixed for the whole data collection 

process. Amplified signals were recorded through a line-in input of a standard sound card 

at a sampling rate of 44100 Hz. 

The signal from the piezoelectric strain gauge was buffered by a custom-designed 

amplifier with input impedance of approximately 100 MΩ. This buffered signal was 

acquired by a 16-bit data acquisition module USB-1608FS 

(www.measurementcomputing.com) at a sampling rate of 100 Hz.  

A handheld push-button switch was connected to another input channel of the USB-

1608FS. Subjects were asked to push the button to indicate swallowing instances which 

were recorded as a pulse of 5 V.  
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During each session of the data collection, subjects were videotaped in profile by a 

camcorder to capture subject activity and ambient sound independent of data acquisition 

by computer. Camcorder video was captured at 30 frames per second in an interlaced 

format. To simplify the scoring process, video was deinterlaced into a progressive 60 

frames per second stream and the sound track was separated from video. 

4.2. Software 

Data acquisition software was developed in LabVIEW (National Instruments). The 

software allows simultaneous capture of 4-channel sound (from 2 sound cards) and up to 

8 channels of sensor data (such as the strain sensor signal and the square wave from the 

button). All captured data are synchronized in time. Information about the data files and 

synchronization values was stored in a project file. 

The scoring software (Fig. 7), also developed in LabVIEW, allows manual review and 

playback of the acquired data by a human rater and assignment of event marks to each 

instance of swallowing, each period of chewing with associated number of chews, and 

bites with associated mass of the bite.  
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Figure 7: Scoring software graphical user interface: 1) activity mark, 2) 
bites/chews/swallows track, 3) ambient sound signal, 4) throat microphone signal, 5) 

bone conduction microphone signal, 6) strain sensor signal, 7) user button signal. 
 

The scoring software also allows the user to zoom in and out in the data window, show 

all or selected data channels, and browse video frame-by-frame or any specified interval. 

The same software also allows assignment of labels for long-term activities performed by 

a subject. For example, periods of consumption of a specific type of food or a specific 

activity such as silent inactivity or talking can be indicated on the timeline. Manual 

scoring of the data utilizes all the data channels shown in Fig. 7, including the video and 

signals from the sound and strain sensors. A scorer following a predefined protocol 

identifies target segments of the time series, plays back the sensor data and narrows the 

boundaries of bites, chews and swallows. 
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4.3. Data collection protocol 

Data collection was performed on a group of 21 generally healthy human subjects, 12 

males and 9 females. In addition, since chewing and swallowing detection may be more 

difficult in obese individuals, thirty eight percent of subjects had a body mass index 

(BMI) greater than 30. The mean BMI of the subjects was of 28.98 with standard 

deviation of 6.42, subject’s minimal BMI of 20.9 and maximum BMI of 42.1. 

Institutional Review Board approval was obtained for the study. Subjects read and signed 

the informed consent form. Data collection for each subject was performed during four 

visits. The subject’s weight, waist and hip circumference (to identify android or gynoid 

type of obesity if present) were measured at each session. The subject’s height was 

measured once during the first session. Subjects were encouraged to abstain from talking 

during the study unless they were asked to talk. All subjects had no dental problems that 

would interfere with normal food intake. As much as possible, an attempt was made to 

recruit a diverse population in terms of gender, ethnicity, age, and body size. However, 

due to the small sample size, at present, our sample may not be representative of the 

population.  

Each session consisted of three parts: (1) a 20 min inactivity period (10 min of silent 

inactivity and 10 min of talking where the subject was asked to read aloud); (2) the meal 

period, consisting of unlimited time to eat a meal of a fixed size plus extra food items at 

the end of this period, if desired; (3) a second 20 min inactivity period (10 min of silent 

inactivity and 10 min of talking). A variety of magazines were provided to entertain the 

subject during the inactivity periods. Subjects were encouraged to read with a straight 
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neck, holding the magazine in front of the face to avoid obscuring the camcorder’s 

perspective of the subject’s neck.  

Two fixed sizes of the meal (standard and large) were used with the large size being 50% 

bigger than the standard. The following food items were included in the meal: a slice of 

cheese pizza, a container of 1% fat yogurt, an apple, and a peanut butter sandwich. The 

foods were selected to represent different physical properties of the food such as 

crispiness, softness/hardness and tackiness. The variability in physical properties of food 

ensured that the proposed methodology was tested on a sample that is representative of 

the variability in the properties of everyday food. More analysis is needed to determine if 

sensors are capable of distinguishing between food properties. The provided drink was 

clear water. All food items were to be consumed unmixed and completely. The weight of 

the food item was measured after each bite on an electronic scale and recorded by the 

observer. Water was consumed separately from food.  

During the first session, a standard size meal was served and no background noise was 

allowed during the meal period. During the second session, a standard size meal was 

served and background noise and talking to the subject were used during the meal period. 

Noise was introduced in the experiment to simulate realistic environments where people 

may be eating, and that can potentially impact results in future sound recognition 

experiments. To create background noise a combined recording of city noise, restaurant 

noise and segments of music recordings at a fixed volume level was used. To involve the 

subject in conversation, the operator asked the subject questions not relevant to the 

purpose of the research. During the third session, a large size meal was served and no 
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background noise was allowed during the meal period. During the fourth session, a large 

size meal was served and background noise and talking to the subject were used during 

the meal period. 

The complete version of the data collection protocol is presented in Appendix A.  

4.4. Conclusions 

The human study described in this chapter was performed to collect the data needed to 

validate the proposed swallowing detection and food intake detection methodologies. A 

methodology of studying of ingestive behavior by non-invasive monitoring of 

swallowing (deglutition) and chewing (mastication) has been proposed based on data 

from sensors that may be implemented in a wearable monitoring device, thus enabling 

monitoring of ingestive behavior in free living individuals. The hardware/software 

system described in this chapter captures multi-modal sensor data which can be used for 

manual scoring of swallowing and food intake periods. These manual scores will further 

be used for assessment of swallowing and food intake detection accuracies. 
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5. Automatic Detection of Swallowing Events by Acoustical Means 

Related publications: 

• Sazonov E, Makeyev O, Schuckers S, Lopez-Meyer P, Melanson E, Neuman M 
(2010) “Automatic detection of swallowing events by acoustical means for 
applications of monitoring of ingestive behavior” IEEE Transactions on 
Biomedical Engineering, 57:626–633. 

Material of this chapter was published as a journal paper in [Sazonov et al. 2010] and is 

presented here in the corresponding form. The author of this dissertation was the primary 

student contributor to the work presented in this chapter.  

5.1. Abstract 

Our understanding of etiology of obesity and overweight is incomplete due to lack of 

objective and accurate methods for Monitoring of Ingestive Behavior (MIB) in the free 

living population. Our research has shown that frequency of swallowing may serve as a 

predictor for detecting food intake, differentiating liquids and solids, and estimating 

ingested mass. This paper proposes and compares two methods of acoustical swallowing 

detection from sounds contaminated by motion artifacts, speech and external noise. 

Methods based on mel-scale Fourier spectrum, wavelet packets, and support vector 

machines are studied considering the effects of epoch size, level of decomposition and 

lagging on classification accuracy. The methodology was tested on a large dataset (64.5 

hours with a total of 9,966 swallows) collected from 20 human subjects with various 

degrees of adiposity. Average weighted epoch recognition accuracy for intra-visit 

individual models was 96.8% which resulted in 84.7% average weighted accuracy in 

detection of swallowing events. These results suggest high efficiency of the proposed 
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methodology in separation of swallowing sounds from artifacts that originate from 

respiration, intrinsic speech, head movements, food ingestion, and ambient noise. The 

recognition accuracy was not related to body mass index, suggesting that the 

methodology is suitable for obese individuals. 

5.2. Introduction 

The world is still losing in the battle with the obesity epidemic. According to WHO, in 

2005 there were approximately 1.6 billion overweight and at least 400 million obese 

adults worldwide [WHO 2006]. Current trend is unsettling: 2015 projections predict 2.3 

billion overweight and 700 million obese adults worldwide. Obesity is one of the risk 

factors for development of chronic diseases and presents a serious health problem. A 

recent study [Olshansky et al. 2005] suggested that effects of obesity on global health 

may be comparable to those of cancer. Though etiology of obesity is a topic of ongoing 

scientific debate, regulation of food intake may be the primary factor for maintaining a 

healthy weight [Flatt 1996] in the environment that provides abundance of inexpensive, 

highly palatable and energy dense foods, while requiring only minimal levels of physical 

activity [Hill et al. 2003].  

While various methods have been developed for accurate and objective characterization 

of energy expenditure [Ainslie et al. 2003], at the present time, there is no accurate, 

inexpensive, non-intrusive way for objective Monitoring of Ingestive Behavior (MIB) in 

free living conditions. The most precise method of measuring energy intake is the 

Doubly-Labeled Water (DLW) technique which provides accurate estimates of caloric 

energy intake over long periods of time (10-14 days), if subjects remain weight stable.  
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However, the DLW technique cannot identify daily intake patterns. Dietary self-report 

methods like food frequency questionnaires [Weber et al. 2001], self-reported diet diaries 

[De Castro 1994], and multimedia diaries [Kaczkowski et al. 2000] have been shown to 

be inaccurate and underreport daily intake.  

Our recent research [Sazonov et al. 2009b] has shown that frequency of swallowing 

events can serve as a predictor for accurate detection of food intake, differentiation 

between liquid and solid foods and estimation of ingested mass, with high frequency of 

swallowing being indicative of ingestion. Thus, an affordable wearable MIB device can 

potentially be created for objective capture and characterization of food intake. Such a 

device would capture both spontaneous and food intake swallows as they happen 

throughout the day without any conscience input from the user. A higher-level algorithm 

[Sazonov et al. 2009b] would detect and characterize food intake from the time series of 

swallows. Potentially, such a device can reduce underreporting because: 1) monitoring is 

objective and does not rely on self-report; 2) continuous capturing of spontaneous 

swallows indicates whether the sensor system is being worn or not, thus preventing or 

detecting intentional misreport. 

While the weight gain is ultimately defined by the energy balance (energy intake minus 

energy expenditure) and the proposed MIB device by itself cannot capture the energy 

content of a meal, such a device can provide valuable information about ingestion that is 

not available at this time. Potentially, the device can help diagnose and treat dangerous 

behaviors leading to weight gain, such as unconscious snacking [Ward 1998], night 

eating [Stunkard 2002], and evening [Kant et al. 1995] or weekend overeating [Haines et 
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al. 2003]. The device may also find applications in diagnostics and treatment of disorders 

not directly related to obesity such as inadvertent weight loss (cachexia), anorexia and 

bulimia as well as dysphagia.  

This paper presents a method for acoustical detection of swallowing events which is the 

first and fundamental step in implementation of the wearable MIB device. The 

swallowing detection does not need to differentiate between spontaneous and food intake 

swallows as the methods in [Sazonov et al. 2009b] rely only on frequency of swallowing 

events. Algorithms presented in [Sazonov et al. 2009b] can be applied as the second step 

of processing to detect and characterize food intake from the time series of swallows.  

This paper demonstrates high accuracy of swallowing event detection by acoustical 

means on the largest dataset to date by the methodologies based on mel-scale Fourier 

Spectrum (msFS) and Wavelet Packet Decomposition (WPD) for time-frequency 

representation, and Support Vector Machines (SVM) for automatic recognition of 

characteristic sound of swallowing. It also contains assessment of the size of a near-

optimal time decomposition window and effects of the decomposition level and epoch 

lagging on accuracy of swallowing detection suggesting that epoch duration used in 

earlier publications may not be optimal. Furthermore, assessment of recognition accuracy 

as a function of subject’s Body Mass Index (BMI) shows that the proposed acoustical 

method is suitable for obese individuals. Finally, it is demonstrated that proposed 

methods have substantial tolerance to the sound artifacts resulting from food intake, 

intrinsic speech and background noise and thus may be suitable for free living conditions. 
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This paper is organized as follows: section 5.3 presents the background on assessment of 

swallowing sound signals and currently used automatic swallowing detection methods. 

Section 5.4 provides a brief description of the data collection process. Section 5.5 

presents a detailed description of the proposed methodology. Experimental results are 

presented in section 5.6 followed by the Discussion and Conclusions. 

5.3. Acoustical detection of swallowing events 

At the present time videofluoroscopy and EMG are considered the gold standard in 

studies of deglutition. Videofluoroscopy depends on bulky and potentially unsafe 

equipment while EMG is too invasive due to frequently used subcutaneous placement of 

electrodes in the masseter, suprahyoid and infrahyoid muscles [Ertekin et al. 2002] to 

avoid interference from the muscles of the neck. Other reported sensors include a variety 

of strain devices [Ertekin et al. 2002, Stellar and Shrager 1985, Pehlivan et al. 1996]. 

However, most of the reported results indicate that detection of swallowing by a 

laryngeal strain sensor is not appropriate for obese subjects since under chin adipose 

deposits inhibit reliable detection of swallows. Use of accelerometer placed over the 

suprasternal notch of trachea as suggested by [Lazareck and Moussavi 2002, Aboofazeli 

and Moussavi 2004, Aboofazeli and Moussavi 2006] may also be not appropriate for 

obese individuals for the same reasons. Detection of the characteristic swallowing sound 

created by the specific motion of laryngopharynx can be performed by a microphone 

which is significantly less invasive and more effective for obese individuals than the 

methods listed above.  
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Several methods have been proposed for assessment of swallowing sounds using signal 

processing and pattern recognition techniques. Papers [Lazareck and Moussavi 2002, 

Aboofazeli and Moussavi 2004, Aboofazeli and Moussavi 2006, Aboofazeli and 

Moussavi 2008] presented methodologies for automatic decomposition of the tracheal 

sound signal into swallowing and respiratory segments in applications to dysphagia. The 

signal decomposition techniques utilized such features as autoregressive coefficients, root 

mean square values of the signal in time domain, average power of the signal within 

several frequency bands, waveform fractal dimension and Discrete Wavelet Transform 

on time windows (epochs) ranging in duration from 12.5 to 100 ms. Reported recognition 

rates were in the range from 78.54% [Lazareck and Moussavi 2002] to 93% [Aboofazeli 

and Moussavi 2006] although the sound recordings did not include any speech or noise. 

Rejection of artifacts arising from ingestion, intrinsic speech and external noise is an 

issue that needs serious consideration. In the MIB applications, artifacts such as 

breathing, talking, throat cleaning, head movements, etc. may be confused with 

swallowing thus decreasing the accuracy of the recognition [Das et al. 2000]. The 

feasibility of sound artifact rejection was tested in [Makeyev et al. 2008b] where 

swallowing sound recognition was performed using the Limited Receptive Area neural 

classifier in combination with short-time Fourier transform and continuous wavelet 

transform. The methods in [Makeyev et al. 2008b] achieved 100% accuracy in 

classification of swallowing sounds on a limited dataset containing swallowing sounds, 

motion artifacts, talking and music, although practical applications to large datasets were 

limited by high computational burden of the method. 
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A recently reported method of automated swallowing detection that was tested in the 

presence of artifacts originating in talking, head movements, food ingestion, and 

respiration was presented in [Amft and Tröster 2008]. The data was collected from six 

healthy subjects using a sensor collar containing surface electromyography electrodes and 

a stethoscope electret microphone. A total of 7.93 hours of data with 1,265 swallows was 

acquired. Feature similarity search combined with an agreement of the detectors fusion 

method was used for classification. Four-fold cross validation was used with three folds 

used for training and one for validation. The average recognition rate of 70% was 

obtained for labeling epochs of 250ms as swallows/non-swallows but no accuracy in 

detection of swallowing events was reported.  

In summary, acoustical detection of swallowing events, as presented herein, may present 

a non-invasive and convenient method suitable for use by obese individuals. However, 

the field of swallowing sound detection is relatively unexplored with a significant need to 

focus on realistic conditions with presence of various sound artifacts. Another key 

consideration is the choice of the epoch duration and lagging for signal analysis. Epoch 

sizes used in [Aboofazeli and Moussavi 2004, Aboofazeli and Moussavi 2008, Amft and 

Tröster 2008] are substantially shorter (12.5-250 ms) than the average duration of a 

swallow (0.86 s) [Palmer et al. 1992] and thus may represent only a partial segment of a 

swallowing sound or require a large number of time lags. The goal of the methodology 

proposed in this paper is to consider acoustical swallow recognition as a method which 

may be appropriate for obese individuals; compare two popular signal time-frequency 

decompositions; investigate selection of key parameters of time-frequency transforms 

such as epoch duration and level of decomposition; and to test the proposed methods on a 
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challenging dataset that resembles free living conditions and includes artifacts of various 

origins. 

5.4. Data collection 

The data used in this paper were collected in human study reported in [Sazonov et al. 

2008] where the details of the protocol, hardware, sensors and reliability of the manual 

scoring procedure are reported, but with no attempt to automatically recognize 

swallowing events. The following is a summary of the human study. The subject 

population included 20 volunteers, of which 7 had BMI greater than 30 (obese). Each 

subject participated in four visits, each of which consisted of a 20-minute resting period, 

followed by a meal, followed by another 20-minute resting period. Out of 80 collected 

visits, 10 were discarded due to data collection errors [Sazonov et al. 2008].  Selection 

and sequence of foods were fixed for each meal and represented different physical 

properties of the food such as crispiness, softness/hardness and tackiness, all of which 

may potentially impact both the artifacts arising from chewing sounds and the 

swallowing sound itself. To evaluate the impact of a meal-time conversation on the 

accuracy of swallowing detection, the subjects were involved in a dialogue with a 

member of the research team during the second and fourth visits and ate in silence during 

the first and third visits. Additionally, background noise (city noise, restaurant noise and 

music) were played during the second and fourth visits to simulate realistic environments 

where people may be eating. The subjects were monitored by a multi-modal sensor 

system which included an IASUS NT (IASUS Concepts Ltd) throat microphone located 

over laryngopharynx. The microphone provided a dynamic range of 46 ± 3 dB with a 

frequency range of 20 Hz to 8000 Hz. Amplified signals were recorded through a line-in 
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input of a standard sound card at a sampling rate of 44100 Hz. The recordings were 

manually scored to mark the boundaries of each swallow. The evaluation of inter-rater 

reliability reported in [Sazonov et al. 2008] showed high reliability of manual scores 

(0.98 average intra-class correlation) for detection of swallows. 

5.5. Methodology 

The methodologies proposed in this paper are based on two popular time-frequency 

decompositions: mel-scale Fourier Spectrum (msFS) and Wavelet Packet Decomposition 

(WPD) with classification performed by Support Vector Machines (SVM). Time-

frequency decomposition and feature extraction based on WPD and msFS is widely used 

for processing of physiological signals, such as, for example, heart sounds [Turkoglu et 

al. 2003] and lung sounds [Liu et al. 2006, Cristianini and Shawe-Taylor 2000]. SVM is a 

supervised learning method that has a sound theoretical basis, is robust to overfitting (loss 

of generalization on noisy or incomplete data [Cristianini and Shawe-Taylor 2000]) and 

capable of producing very complex decision boundaries.  

5.5.1. Feature Extraction by Wavelet Packet Decomposition 

First, the sound stream was split into a series of overlapping epochs with fixed duration D 

and step S. A Hanning window was applied to each epoch. Second, a time-frequency 

decomposition of each epoch was obtained using Wavelet Packet Decomposition creating 

2N wavelet packets (where N is the level of decomposition) [Addison 2002]. A packet on 

the previous level is decomposed into two packets on the next level as: 

∑ −=
k

nkn ktwhtw )2(2)(2   [5.1] 
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∑ −=+
k

nkn ktwgtw )2(2)(12   [5.2] 

where hk is the low-pass Finite Impulse Response (FIR) filter and gk is the high-pass FIR 

filter such as: 

k
k

k hg −−= 1)1(   [5.3] 

The WPD was computed using Coiflet C4 wavelet. Advantages of the Coiflet wavelet 

include near linear phase, good amplitude response and fast computation [Fu et al. 2003].  

WaveLab [Buckheit and Donoho 1995] package for Matlab was used to perform WPD. 

Third, each wavelet packet was converted into a scalar feature forming a feature vector  

of length 2N for each epoch. The chosen feature was the unbiased estimate of entropy 

[Moddemeijer 1989].  Fourth, to account for the time-varying structure of a swallow, a 

time-lagged feature vector was produced by merging feature vectors of the K adjacent 

epochs: .  

5.5.2. Feature Extraction by Mel-Scale Fourier Transform 

First, segmentation of the sound signal into overlapping epochs was performed 

identically to the one used for WPD. Second, the Fourier amplitude spectrum F(k) of 

length L was computed for every epoch. Third, a mel-scale triangle filter bank )(kM i  

[Wu and Lin 2000] was used to compute 2N point feature vector  (where N is an 

equivalent to WPD’s level of decomposition) defined as: 
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Finally, the time-lagged vector  was obtained in the same way as for WPD. Fig. 8 

shows a segment of the sound recording containing a swallow and its respective 

representation obtained by WPD and msFS processing with decomposition level N = 8, 

epoch duration D = 1.5 s and step S = 0.2 s. 
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Figure 8: Feature extraction: a) A 4.0s fragment of a sound recording including a 
swallow, b) features extracted by WPD processing, c) features extracted by msFS 

processing.  Frequencies are shown for the center of the extracted band. 

5.5.3. Support Vector Machines 

The time-lagged feature vectors obtained either through WPD or msFS processing 

were used as inputs for training and validation of an SVM classifier  [Cristianini and 

Shawe-Taylor 2000]. The choice of the SVM as a classifier was defined by sound 

theoretical foundation and robust performance of SVM classifiers. A comparison of SVM 

performance to performance of 16 classification and 9 regression methods on 21 data sets 

for classification and 12 data sets for regression [Meyer et al. 2003] ranked SVM as one 

the best techniques on most data sets, especially for classification. LibSVM package for 

Matlab [Chang and Lin 2001] was used for training the SVM classifier using the 

Gaussian radial basis kernel function. Optimal parameters of the SVM classifier were 

found by a grid search procedure. 
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5.5.4. Selection of Optimal Epoch Duration and Decomposition Level 

Optimal epoch duration D, epoch step size S, decomposition level N and number of lags 

K were determined in a grid search procedure. The epoch duration and step size (D/S) 

were taken from a set {3.0/0.4, 1.5/0.2, 0.75/0.1, 0.375/0.05} seconds which represents 

progressively finer time resolutions. Decomposition level both for WPD and msFS was 

taken as N ∈{5,6,7,8,9} thus producing from 32 to 512 features for each epoch. The 

number of lags K was either 0 or 1 since a higher number of lags produced long feature 

vectors which substantially slowed the classifier. Since a grid search procedure is time 

consuming, it was performed on randomly selected two visits that included noise and 

talking during the meal and thus presented a harder classification case. The grid search 

procedure repeatedly trained classifiers defined by various combinations of D/S, N and K. 

The validation accuracy was used to evaluate the goodness of parameters. Training and 

validation were performed with 34% of the data (one fold) used for training and 66% 

(two folds) used for validation. The accuracy of swallowing detection was estimated as 

described further. 

5.5.5. Training and Validation 

The pairs of feature vectors and class labels to be used as inputs for the SVM classifier 

were obtained in the following way: if any part of the epoch belonged to a swallow 

marked in the manual score the epoch label was set as ‘1’ (swallow epoch), otherwise it 

was set as ‘-1’ (non-swallow epoch). Individual intra-visit models were built for 70 visits 

of 20 subjects. The training and validation sets were formed by taking into account the 

highly non-homogeneous structure of each visit. For example, a period of quiet resting 

with no talking and no food intake will not have enough variability in the data to train a 
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classifier that would work reliably if talking or food intake is introduced. Since talking, 

food intake and external noise are introduced at various times in each visit, a longitudinal 

segmentation was used. Each visit was divided into 55 segments of equal duration, each 

segment 1 minute in duration on average. Three-fold cross-validation was performed with 

two folds used for training and one fold used for validation.  

5.5.6. Accuracy of Detecting Swallowing Instances  

Predicted class labels represent accuracy of the classifier on epoch level and do not 

correspond well to the accuracy of detection of swallowing events. Transition from the 

epochs to swallowing events was done by identifying all situations where either Manual 

Score (MS) or Automatic Score (AS) indicated presence of a swallow and calculating the 

numbers of true positives, false positives and false negatives in terms of swallowing 

events. A true positive ( ) was counted if both MS and AS contained continuous 

sequences of epochs marked as swallows intersecting at one or more epochs or on the 

sequence boundary (Fig. 9, a). A false positive ( ) was identified if the AS marked a 

swallow which was not present in the MS (Fig. 9, b). A true negative ( ) was counted if 

both MS and AS contained continuous sequences of epochs marked as non-swallows 

intersecting at one or more epochs (Fig 9, c). A false negative ( ) was counted if the MS 

marked a swallow which was not present in the AS (Fig 9, d).  The accuracy of 

swallowing events detection was then estimated using weighted accuracy, sensitivity and 

specificity: 

  [5.5] 
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  [5.6] 

  [5.7] 

 

Figure 9: Examples of: a) true positive, b) false positive, c) true negative, d) false 
negative. Each number represents a class label for an epoch (‘-1’ – non-swallow epoch, 

‘1’ – swallow epoch). 
 

5.6. Results 

The graphs obtained by the grid search of optimal epoch duration, decomposition level 

and number of lags on a subset from 2 visits are shown in Fig. 10 which suggests the best 

parameters for WPD processing: 9th level of decomposition on 1.5 s epochs. For msFS 

processing the best parameters are at 7th level of decomposition on 1.5 s epochs. These 

parameters with and without lagging were used to process throat microphone signal 

collected in 70 visits. SVM training was performed with misclassification penalty C = 10 

and Gaussian kernel width parameter γ = 0.05 obtained by a grid search. Results obtained 

in per-epoch recognition and detection of swallowing events are presented in Table 2. 
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Figure 10: Accuracy of swallowing sound recognition as a function of epoch duration and 
decomposition level: a) msFS with no lags, b) WPD with no lags, c) msFS with K=1, (3 

lags), d) WPD with 3 lags. 
 
Table 2: Accuracy obtained in swallowing detection for three-fold cross-validation. 

Feature WPD-9 WPD-9 msFS-7 msFS-7 
Number of lags 1 3 1 3 

Average per-epoch 
accuracy (%) 95.9 96.4 96 96.8 

Average per-swallow 
accuracy (%) 79.4 79.4 79 84.7 

 

The best average weighted accuracy in terms of epochs and swallows was produced by msFS-7 

with 3 lags and found to be 96.8±1.4% for epochs and 84.7±6.9% for swallows. The distribution 

of average weighted accuracy in classification of epochs and swallowing events versus the 

subject’s BMI and corresponding linear fit of the data are presented in Fig. 11. To assess the 

impact of sound artifacts on accuracy of identifying swallowing events the average weighted 

swallowing accuracy was also computed individually for the four non-overlapping parts of the 

validation set corresponding to the following categories: periods of no food intake and no talking 
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(88.0%), periods of no food intake with talking (86.4%), periods of food intake and no talking 

and background noise (86.2%), and periods of food intake with talking and background noise 

(82.9%).

 

Figure 11: Distribution of average weighted accuracy in classification of epochs and swallowing 
events versus subject’s BMI and corresponding linear fit of the data. 

 

5.7. Discussion 

One of the goals of this work was to determine the optimal duration of an epoch since 

durations reported in existing literature [Aboofazeli and Moussavi 2004, Aboofazeli and 

Moussavi 2008, Amft and Tröster 2008] varied over a wide range of 12.5-250 ms. As 

Fig. 10 shows that the epoch duration of 1.5s clearly demonstrates the highest recognition 

accuracy both for msFS and WPD with or without lagging. This corresponds well with 

the mean duration of swallow which in our study was found to be 1.15 s with a standard 

deviation of 0.29 s (based on analysis of 10,686 swallows), comparable to previously 

reported duration of 0.86s [Palmer et al. 1992]. Thus, the epoch duration of 1.5 s is 

sufficient to completely include an average swallow. We believe that such choice of the 
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epoch duration is one of the reasons that our recognition rate is substantially higher than 

per epoch accuracy of 70% reported in [Amft and Tröster 2008] where the authors used a 

0.25 s epoch which cannot cover a complete swallow. Although our study excluded 

dysphagic subjects, we may anticipate that recognition of longer-than-normal dysphagic 

swallows [Vaiman and Nahlieli 2009] may benefit from a longer epoch. 

Fig. 10 also demonstrates accuracy growth with increase in the level of decomposition. 

The most pronounced increase for msFS is observed up until the 7th level of 

decomposition. As Table 2 shows a lagged version produces higher overall accuracy due 

to better preservation of accuracy during transitioning from epochs to swallows on some 

of the visits. Lagging takes the feature evolution over time into account and thus 

produces more accurate results. The non-lagged version of WPD processing clearly peaks 

at the 9th level of decomposition and trends toward further growth. Unfortunately, higher 

levels of decomposition result in unacceptably long processing times both for feature 

extraction and classification. The lagged version of WPD behaves somewhat erratically 

(which may be attributed to a limited dataset used in the grid search procedure) but 

clearly peaks at 8th level of decomposition, confirming that 8th-9th levels are probably 

near the optimum for WPD. Fig. 10 and Table 2 also demonstrate that msFS time-

frequency decomposition clearly outperforms WPD resulting in higher recognition 

accuracy. A possible explanation is non-linear scaling of the frequencies by msFS which 

allows for a better representation of the lower frequencies which contain most of the 

energy of a swallowing sound. 
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One of major advantages of the current study is that it was designed to be close to real 

life conditions and include sound artifacts originating from chewing of food of different 

textures, talking, head movements, occasional intrinsic sounds (for example, coughing), 

and background noise of various origins. Thus, the classifier had to deal with a 

significantly more complex problem than previous studies while achieving a comparable 

(vs. 93% in [Aboofazeli and Moussavi 2006]) or better performance (vs. 79% in 

[Aboofazeli and Moussavi 2004]).  The closest study that allows direct comparison is 

[Amft and Tröster 2008] which achieved the epoch-accurate average recognition rate of 

70% but did not report on accuracy of detecting swallowing events. For comparison, the 

methodology proposed in this paper yielded the average weighted epoch accuracy of 

96.8% that relates to 84.7% average weighted accuracy in detection of swallowing 

events. Furthermore, our study utilized a wider variety of solid foods (cheese pizza, an 

apple, and a peanut butter sandwich) with varying physical properties that directly impact 

the sounds of mastication [De Belie et al. 2003] and subsequently influence swallowing 

recognition. Another advantage is unrestricted consumption of liquids which were limited 

in [Amft and Tröster 2008] to 5ml and 15ml of volume at a time. Liquid consumption is 

characterized by a very high swallowing frequency [Sazonov et al. 2009b] in which 

identification of individual swallows is difficult due to the fact that consecutive swallows 

may be recognized as one. The results show that artifact sounds negatively impact the 

recognition accuracy but not to a degree that would render the method unusable. As 

expected, the highest recognition accuracy is observed for quiet periods of no food intake 

(88.0%) and the lowest recognition accuracy is observed for periods of food intake 
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combined with talking and background noise (82.9%). Thus, application of noise 

cancellation techniques may further improve on the classification accuracy. 

As Fig. 11 suggests the accuracy of detecting swallowing events is very likely not to be 

dependent on the subject’s BMI. While more data is needed to obtain higher statistical 

significance, this may be an important advantage of the acoustical approach of detecting 

swallowing events. The highest BMI of a volunteer in the study was 42.1 which is 

considered severe (morbid) obesity. Even for this volunteer the swallowing identification 

accuracy was greater than 80%. Thus, these results suggest that the proposed 

methodology could be used for monitoring of food intake in obese individuals. 

The reported experimental results were obtained on the dataset containing 64.5 hours of 

data with 9,966 swallows collected from 20 subjects with the experimental conditions 

resembling those of food consumption in free living. To our knowledge this is largest 

dataset collected to date. In addition, the manual score of swallows used for training of 

the classifiers has known reliability metrics [Sazonov et al. 2008]. Overall, the proposed 

methodology showed good performance in testing on a more complicated dataset than 

any of the previous studies. The next step in the development of the acoustical method of 

the detection of swallowing is development of inter-visit individual and group models 

that could be practically applied for automatic scoring of the swallowing sound 

recordings. The desired accuracy of the identification of swallowing is another question 

that needs further investigation. However, the methods for detection of food intake and 

prediction of ingested mass [Sazonov et al. 2009b] should offers some tolerance to the 
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errors in detection of swallowing instances since they rely on multiple swallows and 

relatively long time windows (up to 2 minutes). 

The results of this study also have important implications for the original intent to use 

automatic recognition of swallowing sounds in a wearable device for monitoring of 

ingestion.  The time sequence of swallows detected by the proposed method can be 

further processed by algorithms in [Sazonov et al. 2009b] to detect and characterize food 

intake to achieve real-time monitoring of ingestion. With the rapid progression of 

computing power available in modern ubiquitous platforms (cell phones, PDA) the 

proposed MIB methodology can be implemented as a wearable device allowing for real-

time biofeedback to individuals. Such a wearable device may potentially find numerous 

applications in research, clinical nutrition and self-monitoring of food intake by general 

population. 

5.8. Conclusion 

In this paper we describe two automatic acoustical swallowing detection methods for use 

in MIB applications. The methods were based on combination of mel-scale Fourier 

Spectrum (msFS) or Wavelet Packet Decomposition (WPD) and Support Vector 

Machines. The proposed methodology was tested on the data collected from 20 human 

subjects with 35% of the subjects being obese with Body Mass Index (BMI) of at least 30 

and the average BMI of 28.53 using a multi-modal data collection system designed for 

non-invasive monitoring of chewing and swallowing. The total duration of data used for 

training and validation was 64.5 hours including 9,966 swallows which makes it the 

largest dataset to date. Average weighted epoch classification accuracy of 96.8% resulted 
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in 84.7% average weighted accuracy in detection of swallowing events. Optimal duration 

of a sound time slice was found to be 1.5s which corresponds well to statistics of 

swallowing duration. The msFS decomposition with 3 lags clearly outperformed WPD in 

recognition accuracy. A study of impact of food intake, talking and background noise on 

accuracy of swallowing detection suggests robustness of the proposed methodology to 

such events as well as its ability to accurately separate swallowing sounds from sound 

artifacts that originate in respiration, talking, head movements, food ingestion, and 

ambient noise. The method was also demonstrated to work equally well for both obese 

and non-obese subjects. The described methodology and sensors may be implemented in 

a wearable monitoring device, thus enabling MIB applications in free living individuals. 
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6. Automatic Food Intake Detection Based on Swallowing 
Sounds  

Related publications: 

• Makeyev O, Lopez-Meyer P, Schuckers S and Sazonov E (2010) “Automatic 
food intake detection based on swallowing sounds” Physiological Measurement 
(In review). 

Material of this chapter was prepared for publication and submitted as a journal paper 

[Makeyev et al. 2010] and is presented here in the corresponding form. The author of this 

dissertation was the primary contributor to the work presented in this chapter.  

6.1. Abstract 

This paper presents a novel fully automatic food intake detection methodology, an 

important step toward objective monitoring of ingestive behavior. The aim of such 

monitoring is to improve our understanding of eating behaviors associated with obesity 

and other eating disorders. The proposed methodology consists of two stages. First, 

acoustic detection of swallowing instances based on mel-scale Fourier spectrum features 

and classification using support vector machines is performed. Principal component 

analysis and a smoothing algorithm are used to improve swallowing detection accuracy. 

Second, the frequency of swallowing is used as a predictor for detection of food intake 

episodes. The proposed methodology was tested on data collected from 12 subjects with 

various degrees of adiposity. Average accuracies of >80% and >70% were obtained for 

intra-subject and inter-subject models correspondingly with a fine time resolution of 30s. 

Results obtained on 44.1 hours with a total of 7305 swallows show that detection 

accuracies are comparable for obese and lean subjects. They also suggest feasibility of 
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food intake detection based on swallowing sounds and potential of the proposed 

methodology for automatic monitoring of ingestive behavior. Based on a wearable non-

invasive acoustic sensor the proposed methodology can potentially be used in free-living 

conditions. 

6.2. Introduction 

This paper extends our work on development of automatic and objective approach to 

monitoring of ingestive behavior (MIB) in free-living conditions based on data from 

wearable non-invasive sensors [Sazonov et al. 2008, Sazonov et al. 2009a, Sazonov et al. 

2009b, Sazonov et al. 2010]. Such an approach can be helpful in characterization of 

ingestive behaviors associated with a variety of eating disorders and for development of 

clinical interventions. The World Health Organization predicts 2.3 billion overweight and 

700 million obese adults worldwide by 2015 [WHO 2006] and MIB could potentially be 

used in active weight control programs providing the objective feedback needed for diet 

management [Sazonov et al. 2009b, Amft and Tröster 2009]. Objectivity of such 

feedback is crucial as unhealthful and extreme weight-control were shown to predict 

outcomes related to obesity and eating disorders [Neumark-Sztainer et al. 2006].  

Most of currently used self-reporting techniques demonstrate widespread bias to the 

underestimation of food intake [Livingstone and Black 2003] Because of bias and 

imprecision, self-reported food intake should be interpreted with caution unless 

independent methods of assessing its validity are included in the experimental design 

[Schoeller 1995]. Replacing paper-based reports with manually operated electronic 

devices to simplify tedious and error-prone logging did not improve validity of the 
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reporting [Yon et al. 2006]. A potential solution is to replace or augment manual self-

reporting where individuals have to record their own eating behavior with automatic and 

objective sensor based monitoring where eating behavior is estimated without 

individual’s active participation. This could significantly improve the accuracy reducing 

intake underreporting and relieving the individual from the recording burden while non-

invasiveness and wearability of MIB sensors ensure their suitability for long-term 

monitoring in free-living conditions. 

MIB-based characterization of food intake behavior includes several dimensions 

including: detection of periods of food intake, differentiation of solid foods from liquids, 

recognition of food type, prediction of the mass of ingested food and evaluation of caloric 

intake [Sazonov et al. 2009b]. In this paper we concentrate on development of objective 

and automatic approach to detect periods of food intake as a step towards our long-term 

objective to create an automatic, non-invasive and wearable MIB device suitable for use 

in free-living conditions. For this purpose we proposed a sensor system for non-invasive 

monitoring of chewing and swallowing, validated the reliability of the produced manual 

scores [Sazonov et al. 2008, Sazonov et al. 2009a], established a methodology of 

automatic detection of swallowing instances by acoustical means [Sazonov et al. 2010], 

and developed a methodology for detection and characterization of food intake based on 

manual scores of chewing and swallowing [Sazonov et al. 2009b].  

This paper makes the next fundamental step toward objective MIB by integrating and 

validating a fully automatic food intake detection methodology based on acoustical 

detection of swallowing. The proposed methodology consists of two stages: first, acoustic 
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detection of swallowing instances based on mel-scale Fourier spectrum features and 

classification using support vector machines is performed. Principal component analysis 

and smoothing algorithm are used to improve swallowing detection accuracy. Second, 

frequency of swallowing is used as a predictor for detection of food intake episodes. 

Scheme of the proposed methodology is presented in Fig. 12. 

 

Figure 12: Scheme of the two-stage automatic food intake detection. 
 

The proposed methodology was tested on large dataset (44.1 hours with a total of 7305 

swallows) collected from 12 subjects with various degrees of adiposity.  

Detection of periods of food intake was performed for both intra- and inter-subject 

models that can be directly implemented in a wearable MIB device. Average accuracies 

of >80% and >70% were obtained for intra-subject and inter-subject models 

correspondingly with a fine time resolution of 30s. Detection accuracies are comparable 

for obese and lean subjects and suggest feasibility of food intake detection based on 

swallowing sounds. To the best of our knowledge this is the first attempt of fully 

automatic detection of food intake based on swallowing data from wearable non-invasive 

sensors. Detailed review of previous attempts to detect food intake such as gesture based 

approach proposed in [Junker et al. 2008] and a chewing based approach proposed in 

[Nishimura and Kuroda 2008] is presented in section 6.3 as well as a review of related 
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work on automatic food intake detection based on data from non-invasive wearable 

swallowing sensors. The rest of this paper is organized as follows: description of the 

proposed methodology and the dataset used for its validation are presented in section 6.4. 

Experimental results for intra- and inter-subject food intake detection models are 

presented in section 6.5 followed by Discussion and Conclusions. 

6.3. Related Work 

Three categories of non-invasive wearable sensors have been proposed as basis for 

creation of automatic food intake detection methodology: intake gesture sensors [Junker 

et al. 2008], chewing sound sensors [Nishimura and Kuroda 2008] and swallowing 

sensors [Sazonov et al. 2009b, Sazonov et al. 2010]. Activities that correspond to these 

sensor categories represent a temporal description of food consumption and thus can be 

used to identify periods of food intake. A detailed review of these sensor categories in 

terms of their suitability for detection of periods of food intake is presented below.  

Intake gestures are intentional upper body (arms and trunk) movements related to food 

intake. Compared to a simpler task of recognition of isolated movements, the task of 

gesture detection is more difficult because relevant gestures occur sporadically in a 

continuous stream of data while being embedded into other, partly arbitrary movements 

that are difficult to model due to their complexity and unpredictability [Junker et al. 

2008]. Other sources of challenges include: co-articulation, where consecutive relevant 

gestures influence each other, and intra- and inter-person variability, e.g. in gesture 

duration. All this applies to the task of intake gestures detection solving which would 

reveal information about the timing of nutrition events providing an estimate of periods 
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of food intake. At this moment, the only approach to this task was proposed in [Junker et 

al. 2008] based on data from five inertial sensors attached to wrists (2), upper arms (2) 

and upper torso. This two-stage approach combines natural partitioning based pre-

selection with Hidden Markov Models based classification. It was tested on frequently 

used human feeding movements of both arms and the trunk including: using fork and 

knife for intake of Lasagne, using spoon for intake of cereals or soup, drinking from a 

cup, and intake of bread or chocolate bar using one hand only. The data was collected 

from four subjects; two sessions were performed for each subject on different days. Total 

of 4.7 hours long of data was collected with 34.7% of the data containing intake gestures. 

Average recall of 0.78 and average precision of 0.77 were obtained for subject-specific or 

intra-subject prediction models. No results for non-personalized inter-subject model were 

reported. Even though obtained accuracy suggests the potential of the approach for food 

intake detection it has significant limitations. First, not all the food items require intake 

gestures, e.g. a high-caloric milkshake can be consumed using a straw. Second, arm 

movements to the head that are not related to food intake, e.g. brushing teeth, smoking, 

etc, can result being a significant source of misclassifications. Finally, the authors report 

high intra-subject variability of intake gestures caused by: differences in size and 

consistency of food pieces, temporal aspects, such as changes in food temperature and 

natural satiety subjects were developing during the intake sessions. Even though inter-

subject variability of intake gestures wasn’t evaluated it may be significant taking into 

account differences in human eating behaviors, e.g. eating with chopsticks versus cutlery. 

Therefore, a sensing solution for activity with smaller intra- and inter-subject variability 
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may be a better choice for current task, e.g. chewing and swallowing that seem to be less 

related to personal eating habits compared to intake gestures. 

The task of food intake detection based on chewing is virtually identical to the task of 

detection of chewing instances as chewing sequence which usually starts right after the 

food piece is transferred to the mouth. The crushing of food and mixing it with saliva to 

form a bolus for swallowing is performed with cyclic opening and closing of the jaw and 

arbitrary tongue movements. An approach for automatic detection of chewing instances 

in a continuous data stream produced by a wearable non-invasive sensor was proposed in 

[Nishimura and Kuroda 2008]. In this approach wireless in-ear microphone is used to 

capture sound emissions generated by chewing and transmitted by bone conduction to the 

ear canal. Two-staged chewing detection algorithm first detects chew-like signals by 

applying number of zero-crossings threshold to log energy regression coefficients. Then 

chewing sound verification is performed based on similarity of signals detected at the 

first stage to the chewing sound models derived from the training data. High average 

chewing detection accuracy of 98.7% is reported for five food categories including chips, 

salad, rice, wafers and banana. However, limited data about the method validation are 

provided including the average number of test chews (516) and the number of training 

chews (100) per food category. It is not clear how many human subjects participated in 

the study, whether intra- or inter-subject model results are reported, how the data was 

divided into training and validation sets, what kind of validation technique was used, etc. 

Furthermore, usability of food intake detection based on chewing sensor is limited to 

solid foods since there is little to no chewing present during consumption of liquid and 

certain semisolid (yogurt, pudding, etc) food items. Such a limitation makes chewing 
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sensor a feasible candidate for sensor fusion rather than for an independent food intake 

detection sensor. Finally, absence of spontaneous chewing throughout the day as 

compared to, for example, swallowing gives no indication whether the MIB device based 

on the chewing sensor is being worn or not making the device vulnerable to intentional 

misreport of food intake.    

Unlike chewing, swallowing occurs sporadically and unconsciously throughout the day 

so automatic detection of swallowing instances is only the first step towards the 

swallowing based food intake detection. Detected swallows further need to be classified 

as either spontaneous or food intake swallows. Our work on creation of automatic food 

intake detection methodology based on swallowing started with development of non-

invasive multi-modal monitoring system including a wearable acoustic swallowing 

sensor – a throat microphone located over laryngopharynx [Sazonov et al. 2008, Sazonov 

et al. 2009a]. This monitoring system comprised of hardware, software and protocol for 

manual scoring of the collected data was used in a human study measuring chewing and 

swallowing in 21 subjects during food intake and resting periods. Reliability of the 

manual scoring process was validated using inter-rater reliability study conducted on 

sample set of five subjects for three raters. For swallowing scores high intra-class 

correlation coefficient of 0.98 was obtained suggesting that manual scores are reliable to 

be used as gold standard for validation of automatic swallowing and food intake detection 

algorithms on this large dataset of over 65 hours of data with over 10K swallows. Next, 

in [Sazonov et al. 2009b] we proposed and validated methodology for detection and 

characterization of food intake based on manual swallowing scores. In particular, we 

showed that instantaneous swallowing frequency defined by inverted difference in time 
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between consecutive swallows can serve as a predictor for accurate detection of food 

intake with average accuracy of 87% achieved for 30s epochs. We also proposed and 

validated methodology for automatic detection of swallowing instances by acoustical 

means [Sazonov et al. 2010] yielding 84.7% average accuracy in detection of swallowing 

events for intra-visit individual models. These results suggest the potential of using the 

swallowing frequency for automatic detection of food intake. However, two crucial 

questions remained unanswered. First, methodology of automatic swallowing detection 

was only validated on intra-visit individual models, i.e. training and validation of the 

algorithm were performed on different segments of the same recording rather than on 

separate recordings from the same or different human subjects, that can not be 

implemented in a MIB device as constant real-time re-training of the detection model in 

free-living conditions is not feasible due to the absence of gold standard manual score. 

Therefore, further validation is needed for intra- and inter-subject models which can be 

preprogrammed and implemented in such a device directly. Second, food intake detection 

methodology was only validated on manual scores. Validation on automatically produced 

swallowing scores is needed to evaluate how sensitive the food intake detection algorithm 

is to errors in swallowing detection. This paper answers both of the aforementioned 

questions presenting a first fully automatic food intake detection methodology based on 

wearable non-invasive swallowing sensor and validating it for intra- and inter-subject 

models on a large database collected from 12 subjects during food intake and resting 

periods. Another major contribution of this paper is utilization of principal component 

analysis and smoothing algorithm to improve automatic swallowing detection accuracy 

for intra- and inter-subject models.  
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6.4. Methodology 

6.4.1. Human Study 

Automatic food intake detection methodology proposed in this paper was validated on a 

dataset that is a subset of the data collected during the human study reported in [Sazonov 

et al. 2008]. Short summary of the aspects of the original dataset that are relevant to 

current study is presented below.  

Original subject population included 21 generally healthy volunteers with different 

degrees of adiposity. Each subject participated in four separate visits scheduled for 

different days. Each visit consisted of a 20-minute resting period, followed by a meal, 

followed by another 20-minute resting period. Meals consisted of a fixed sequence of 

food items selected to represent different physical properties of the food. Subjects ate in 

silence during half of the meals and were involved in a dialogue during the other half to 

evaluate the impact of a meal-time conversation on the accuracy of swallowing detection. 

Additionally, a mix of background noise was used during a half of the visits to simulate 

realistic environments where people may be eating. Subjects were monitored by a multi-

modal sensor system which included an IASUS NT (IASUS Concepts Ltd) throat 

microphone located over laryngopharynx. The recordings were manually scored to mark 

the boundaries of food intake periods and each swallowing instance. The evaluation of 

inter-rater reliability showed high reliability of manual swallowing scores with average 

intra-class correlation coefficient of 0.98  

To our knowledge this is the largest dataset collected to date in a study of ingestive 

behavior monitoring based of data from wearable non-invasive sensors. It is also the most 
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complicated one with inclusion of variety of sound artifacts and background noises of 

various origins, variety of food items and human subjects with different degrees of 

adiposity to create experimental conditions resembling those of free-living food 

consumption. A complete review on the original dataset including details of the protocol, 

hardware, software and reliability of the manual scoring procedure can be found in 

[Sazonov et al. 2008]. 

Out of total 84 originally collected visits, 4 visits collected from one subject were used 

for initial calibration of the multi-modal monitoring system and therefore discarded from 

further studies and other 10 visits had partially incomplete data due to different operator’s 

errors committed during the data collection process. Even though most of these errors 

were minor these visits were discarded from the dataset. From the remaining 70 complete 

visits only 12 out of 20 subjects had complete data for all four visits. These 12 subjects 

comprise the dataset used to validate the methodology proposed in this paper. This 

derived dataset is large (44.1 hours with a total of 7305 swallows) and as complicated as 

original one since it includes the same variety of data for population with similar average 

degree of adiposity. Namely, the average BMI for the derived dataset is 29.2±6.9 

compared to 29±6.4 of the original dataset. Average intra-visit swallowing detection 

accuracy calculated for the derived dataset is 96.7% (per-epoch) and 85.1% (per-

swallow) compared to 96.8% and 84.7% respectively obtained for the original dataset 

which is another indication that derived dataset is a representative subset of the original 

one and can be used as such in this study. 
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6.4.2. Automatic Detection of Swallowing Instances 

Methodology for automatic detection of swallowing instances by acoustical means 

presented in this paper is based on the one proposed in [Sazonov et al. 2010] with two 

major improvements. Summary of the original methodology and description of proposed 

improvements are presented below. 

The original methodology was based on mel-scale Fourier Spectrum (msFS) for time-

frequency representation and support vector machines (SVM) for automatic recognition 

of characteristic sound of swallowing [Sazonov et al. 2010]. First, the sound stream was 

split into a series of overlapping epochs and mel-scale Fourier transform were applied to 

each epoch. Second, resulting epoch feature vectors were merged for a number of 

adjacent epochs to produce a time-lagged feature vectors accounting for time-varying 

structure of a swallow. These time-lagged vectors were used as inputs for training and 

validation of SVM classifier using the Gaussian radial basis kernel function. Near-

optimal values for the following parameters: epoch duration of 1.5 s, epoch step size of 

0.2 s, eighth msFS decomposition level, number of lags equal to 1, SVM 

misclassification penalty parameter equal to 10 and Gaussian kernel width parameter 

equal to 0.05 were determined using a grid search procedure in original work and used in 

current study. The methodology was tested on the original dataset containing 70 visits 

from 20 subjects [Sazonov et al. 2008]. Each visit was divided into 55 equal segments 

with average duration of 1 minute. Three-fold cross-validation was performed with two 

folds or two of every three consecutive segments used for training and one fold used for 

validation at each step. The average accuracy of 96.8% for epochs and 84.7% for 

swallowing instances was obtained for such intra-visit models.  
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In this paper we propose and test two major improvements to the original methodology 

presented in [Sazonov et al. 2010]. To improve the performance of automatic detection of 

swallowing instances we propose a preprocessing of msFS features using principal 

component analysis (PCA) and postprocessing of the automatic predicted epochs using a 

smoothing algorithm.  

The combination of two machine learning algorithms: supervised SVM and unsupervised 

PCA is widely used in biomedical engineering [Jin et al. 2007, Rong et al. 2008]. PCA is 

a multivariate non-parametric statistical technique that being applied to a number of 

possibly correlated variables allows to reveal the internal structure of the data in a way 

that best explains its variance and to transform the data into a new set of orthogonal 

variables called principal components which are linear combinations of the original 

variables. The first principal component accounts for as much of the variance in the 

original data as possible, and each succeeding component accounts for as much of the 

remaining variance as possible. Detailed description of the PCA mechanism based on 

calculation of the eigenvalue decomposition of a data covariance matrix is out of the 

scope of this paper and can be found in [Jolliffe 2002]. Measuring variance along each 

principal component provides information on the relative importance of each component. 

Therefore, PCA is often used for dimensionality reduction of feature vectors with smaller 

number of principal components being used compared to the original feature vector 

dimension. Since kernel methods like SVM are tolerant to high dimensionality of features 

we can use SVM with maximal number of principal components not losing any data from 

the original dataset.  
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A postprocessing smoothing algorithm is proposed to refine the automatic epoch score 

produced by the SVM. Binary class labels assigned to epochs for training and prediction 

of automatic score by SVM were produced in the following way: if any part of the epoch 

belonged to a swallow mark in the manual score the epoch label was marked as ‘1’ 

(swallow epoch), otherwise it was marked as ‘-1’ (non-swallow epoch). Such predicted 

automatic score represents accuracy of the classifier on the epoch level. To evaluate the 

accuracy of the classifier in detection of swallowing events manual and automatic label 

scores were used to identify all the situations were either score indicated presence of a 

swallow and calculating the number of true positive, false positive, false negative and 

true negative detections in terms of swallowing events. These detections were later used 

to calculate sensitivity, specificity and prevalence to further calculate overall accuracy of 

swallowing detection as a weighted average of sensitivity and specificity [Alberg et al. 

2004]. Refinement of the automatic epoch score was performed in the two steps: first, 

labels for short segments of up to a predefined number of epochs in duration that were 

automatically marked as ‘-1’ (non-swallow epochs) but were surrounded by epochs 

marked as ‘1’ (swallow epochs) on both sides were reset to ‘1’. This postprocessing step 

was needed to correct the situations in which a single swallow of more than two epochs 

may be split into several parts by a misclassified epoch. Second, labels for short segments 

of up to a predefined number of epochs in duration that were automatically marked as ‘1’ 

but were surrounded by epochs marked as ‘-1’ on both sides were reset to ‘-1’ fixing the 

cases where accidental epochs were incorrectly classified as swallows. Optimal values of 

predefined numbers of epochs for swallow and non-swallow gaps to be reset by the 



 70 

smoothing algorithm were obtained using grid search and were equal to 5 and 0 

respectively. 

The results of testing of both the original and improved swallowing detection techniques 

as a part of a food intake detection methodology in intra- and inter-subject models are 

presented below. 

6.4.3. Automatic Detection of Food Intake 

Methodology for automatic detection of food intake based on swallowing presented in 

this paper stems from the one proposed in [Sazonov et al. 2009].  

Food intake prediction models assign binary labels ‘intake’ or ‘no intake’ to time 

windows of predefined length based on average instantaneous swallowing frequency 

(ISF) calculated for current window. ISF stands for the inverted difference in time 

between each two consecutive swallows and as an instant frequency is expressed in 

swallows per minute. Higher ISF value indicates shorter time between two consecutive 

swallows. 

Selection of the window size defines the time resolution of intake detection. As higher 

frequencies of swallowing indicate the presence of food ingestion the window should be 

long enough to detect an increase in the frequency of swallowing. At the same time it 

should be short enough to detect such short food consumption events as snacking. In 

[Sazonov et al. 2009] we estimated the optimal trade-off between detection accuracy and 

time resolution to be a time window length of 30 s. The same window length was used in 

this study. 
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Detection of food intake using swallowing frequency as a predictor was performed in the 

following way using floating average prediction model: first, a decision threshold is 

calculated as a product of the average ISF for the training set multiplied by a scaling 

factor. In this way a decision threshold is a function of the average ISF. Prediction is built 

for each time window with food intake being detected if average ISF for current window 

is higher than the decision threshold and no food intake being detected otherwise. 

Training is repeated for a range of scaling factors and optimal scaling factor is selected 

based on the highest accuracy achieved with the training set prediction and further used 

for intake detection on the validation set. Prediction on the validation set is built in the 

same way as on the training set using the optimal scaling factor to obtain the decision 

threshold. Complete details on this approach can be found in [Sazonov et al. 2009] where 

similar model was proposed and validated with an average accuracy of 87% obtained on 

the manual scores from the dataset described in [Sazonov et al. 2008]. Validation on 

automatic scores of detected swallowing instances as a part of automatic food intake 

detection for intra- and inter-subject models are presented below. 

6.5. Experimental results 

6.5.1. Intra-subject Food Intake Detection Models 

Subject-specific intra-subject food intake detection models were built separately for each 

subject in such a way that these models were completely independent from each other as 

only the data obtained from current subject was used to build and validate the model. 

Four-fold cross-validation was used with four folds being the four visits of current 

subject. At each cross-validation step both swallowing detection and food intake 
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detection were performed with three visits of a subject used for training and the 

remaining one used for validation. Namely, each cross-validation step consisted of:  

• Swallowing detection stage: acoustical sensor data and manual swallowing scores 

for three training visits were used to produce the automatic swallowing score for 

the validation visit.  

• Food-intake detection stage: manual swallowing and food intake scores for three 

training visits were used to obtain an optimal scaling factor that was further used 

for intake detection on the validation visit using the automatic swallowing score 

produced at the previous stage.  

• Accuracy assessment: manual food intake score for the validation visit was used 

to calculate the accuracy of food intake detection. 

The results of automatic detection of swallowing and food intake for intra-subject models 

with and without preprocessing with PCA and postprocessing with smoothing algorithm 

are presented in Table 3. Per subject and average receiver operating characteristic (ROC) 

for intra-subject food intake detection models were built with sensitivity and specificity 

values obtained using a range of scaling factors to create a range of intake predictions on 

the validation set as compared to using a single optimal scaling factor. These ROC curves 

are presented in Fig. 13. Finally, distributions of intra-subject swallowing and food intake 

detection accuracies versus the subject’s BMI and corresponding linear fits of the data are 

presented in figure 14. Figures 13 and 14 are built for the case of the highest average 

accuracy obtained for intra-subject model highlighted with bold in Table 3. 
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Table 3: Effects of preprocessing (PCA) and postprocessing (smoothing algorithm) on 
average accuracy for intra-subject model  

Average accuracy [Sensitivity, Specificity] (%) 

Intra-subject model Baseline Baseline + 
preprocessing 

Baseline + 
postprocessing 

Baseline + 
preprocessing + 
postprocessing 

Per-epoch swallowing 
detection 

95.1 
[39.3, 98.7] 

95.7 
[42.6, 99.2] 

95 
[40.7, 98.5] 

95.7 
[44, 99] 

Per-swallow 
swallowing detection 

74.5 
[66.2, 81.7] 

79.2 
[72.5, 84] 

75.9 
[64.9, 84.8] 

80.4 
[71.3, 87] 

Food intake detection 76.3 
[68.3, 79] 

75.7 
[72, 77.2] 

77.7 
[67.7, 81.2] 

80.1  
[72.1, 83.7] 
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Figure 13: ROC curves for intra-subject model: per subject and average for all subjects. 
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Figure 14: Distribution of average accuracy in per-epoch and per-swallow swallowing 

detection versus subject’s BMI for intra-subject model. 

6.5.2. Inter-subject Food Intake Detection Models 

Non-personalized inter-subject food intake detection models were built separately for 

each subject in such a way that the training and validation sets belonged to non-

intersecting subsets of data.  

Twelve-fold cross-validation was used with each fold representing all four visits of a 

certain subject. At each cross-validation step all the data from eleven subjects was used 

for training and all the data from the remaining one subject was used for validation. 

Namely, each cross-validation step consisted of:  
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• Swallowing detection stage: acoustical sensor data and manual swallowing scores 

for data from eleven subjects were used to produce the automatic swallowing 

scores for data from the remaining subject.  

• Food-intake detection stage: manual swallowing and food intake scores for data 

from eleven subjects were used to obtain an optimal scaling factor that was 

further used for intake detection on the data from the remaining subject using the 

automatic swallowing scores produced at the previous stage.  

• Accuracy assessment: manual food intake scores for data from the validation 

subject were used to calculate the accuracy of food intake detection. 

The results of automatic detection of swallowing and food intake for inter-subject models 

with and without preprocessing with PCA and postprocessing with smoothing algorithm 

are presented in Table 4. Per subject and average receiver operating characteristic (ROC) 

for inter-subject food intake detection were built in the same way as for the intra-subject 

models. These ROC curves are presented in figure 15. Distributions of inter-subject 

swallowing and food intake detection accuracies versus the subject’s BMI and 

corresponding linear fits of the data are presented in figure 16. Figures 15 and 16 are built 

for the case of the highest average accuracy obtained for inter-subject model highlighted 

with bold in Table 4. 
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Table 4: Effects of preprocessing (PCA) and postprocessing (smoothing algorithm) on 

average accuracy for inter-subject model  
Average accuracy [Sensitivity, Specificity] (%) 

Inter-subject model Baseline Baseline + 
preprocessing 

Baseline + 
postprocessing 

Baseline + 
preprocessing + 
postprocessing 

Per-epoch swallowing 
detection 

91.5 
[36.3, 95.2] 

93.5 
[25, 98] 

90.9 
[39, 94.3] 

93.3 
[26.5, 97.8] 

Per-swallow 
swallowing detection 

64 
[62.1, 69.6] 

65.3 
[52.1, 72.9] 

66.4 
[60, 73.1] 

66.7 
[51.5, 75.6] 

Food intake detection 70.4 
[74.2, 74.9] 

59.9 
[57.3, 58.7] 

70.9 
[75.5, 77] 

61.8 
[58.2, 59.4] 
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Figure 15: ROC curves for inter-subject model: per subject and average for all subjects. 
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Figure 16: Distribution of average accuracy in per-epoch and per-swallow swallowing 
detection versus subject’s BMI for inter-subject model. 

6.6. Discussion 

As can be seen from Tables 3 and 4 the highest average food intake detection accuracies 

of 80.1% and 70.9% were obtained for intra- and inter-subject models respectively. 

Figures 13 and 15 show a reasonable tradeoff between sensitivity and specificity for both 

models. We can also see that for each model there are no more than four subjects 

demonstrating a receiver operating characteristic that is significantly worse than the 

average with a majority of subjects demonstrating a comparable of better characteristic. 

The reasons for such a significant dispersion of results for different subjects are yet to be 

determined. One of the valid hypotheses is dependency of intake detection accuracy on 

subject’s BMI. However, linear fits for distributions of average intake detection accuracy 

versus subject’s BMI presented in figures 14 and 16 suggest that this hypothesis is likely 
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to be false. Even though more data is needed to achieve higher statistical significance 

these linear fits also suggest that the proposed food intake detection approach could be 

used for monitoring of obese individuals.  

It can be seen from Tables 3 and 4 that effect of feature preprocessing using PCA was 

different for intra- and inter-subject models. In the former case it allowed to improve the 

detection accuracy while in the latter it didn’t. We believe that this difference can be 

attributed to the difference in PCA application for two models. This difference stems 

from computational burden of covariance matrix calculation needed to compute the 

principal components. Dimensionality of the covariance matrix is A by A where A is the 

number of observations or, in our case, epochs in the dataset. Covariance matrix is 

calculated for the training set and is used to calculate the matrix of eigenvalues which is 

further used to project the validation data onto the new orthogonal basis. For intra-subject 

models such training set is limited to three visits from a particular subject and covariance 

matrix for it can be calculated directly even though this is the biggest feasible number of 

visits as was determined empirically. For intra-subject models the training set includes a 

total of 44 visits from eleven subjects. Such more than fourteen times increase in the size 

of the training set makes calculation of a complete covariance matrix infeasible. 

Therefore, subset of 3 visits was selected randomly from the original training set and 

PCA training was performed on this subset only. Representativeness of such a small 

subset is very limited, so a different scheme of PCA application for inter-subject models 

allowing a better representation of the training set data in covariance matrix could 

potentially result in an increase in intake detection accuracy similar to the one obtained 

for intra-subject models. 
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As different from the PCA based preprocessing, postprocessing with a smoothing 

algorithm allowed to improve the detection accuracy for both models as can be seen in 

tables 3 and 4. Optimal values of thresholds found in grid search suggest that situations 

where not all the epochs belonging to a single swallow are classified correctly thus 

creating additional false positive swallow detection are a source of swallowing detection 

errors. We can also see that in half of the cases food intake detection offers some 

tolerance to errors in automatic swallowing detection resulting in a higher average 

accuracy. This is due to food intake detection being based of time intervals containing 

multiple swallows which allows some compensation in swallowing detection errors. 

Further investigation is needed for more precise evaluation of the effect of errors in 

automatic swallowing score on accuracy of food intake detection. 

Finally, from tables 3 and 5 and section 6.4.1 we can see that even with the proposed 

improvements the highest per-epoch and per-swallow swallowing detection accuracies 

for intra- and inter-subject models are lower than the ones obtained with training and 

validation performed on each visit separately as in [Sazonov et al. 2010]. Several factors 

could be contributing to this effect besides the intra- and inter-subject variability of 

swallowing sounds including inconsistencies of positioning and fixation of the sound 

sensor for different visits and subjects and further investigation of it is needed.  

While the direct comparison of the swallowing based automatic food intake detection 

approach proposed in this paper with intake gesture and chewing based approaches 

proposed in [Junker et al. 2008] and [Nishimura and Kuroda 2008] respectively can not 

be drawn in the strictest sense we can compare the validation procedures. In [Nishimura 
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and Kuroda 2008] very limited detail is provided on how many human subjects 

participated in the study, whether intra- or inter-subject model results are reported, how 

the data was divided into training and validation sets, what validation technique was 

used, etc. Absence of this critical information on validation procedure does not allow us 

to interpret the reported high average detection accuracy of 98.7% and makes the 

proposed approach of limited practical application. In [Junker et al. 2008] comparable 

results (average recall and precision of 0.78 and 0.77 respectively) are reported to the 

ones obtained in this study for subject-specific intra-subject model validated on a smaller 

dataset with a total of 784 intake gestures compared to a total of 7305 swallows in our 

study. No results for non-personalized inter-subject model were reported in [Junker et al. 

2008] compared to the ones reported in this paper. Therefore, we can conclude that 

validation procedure presented in this paper is the most complete and was performed on 

the largest dataset. Since the proposed swallowing based approach is free of limitations 

inherent in intake gesture and chewing based approaches (outlined in section 6.3) we 

conclude that swallowing sensor may be a most promising option for creation of a single 

sensor MIB device. 

Even though both intra- and inter-subject models can be implemented in a wearable food 

intake monitor an important advantage of non-personalized inter-subject model is that it 

can be applied to any subject without any prior training on the data from this subject. 

Implementation of the intra-subject model would require device calibration for each 

particular subject prior to beginning of monitoring. During this calibration subject would 

have to manually indicate all his swallowing instances with, for example, pushing the 

handheld push-button device during food intake and resting periods. Minimal duration of 
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resting period and minimal amount of food items necessary for obtaining sufficient 

training data may be required. These indicated swallows will be used as manual 

swallowing scores for training data. Such button-based calibration resembles, for 

example, fixed volume bag based calibration of the plethysmograph used in LifeShirt 

(VivoMetrics Inc) [Wilhelm et al. 2003]. 

As practical applicability of the proposed food intake detection approach at this point of 

time is limited by achieved accuracy to intra-subject models with a separate study needed 

to further improve inter-subject models we can outline the following directions of future 

work. First, a new human study needs to be conducted to confirm the effectiveness of the 

proposed approach in long-term (24 hours) and virtually unrestricted free-living 

conditions. Second, using sensor fusion for food intake detection based on combined data 

from different types of sensors may be advantageous. For example, prediction model 

proposed in [Sazonov et al. 2009] was able to detect periods of food intake with average 

accuracy of 87% achieved for 30s windows based on swallows only while a similar 

model based on chews and swallows was able to achieve average accuracy of 95.5%. On 

the other hand, using just one sensor may significantly simplify operation of the MIB 

device and reduce its cost. 

6.7. Conclusion 

First fully automatic food intake detection methodology based on wearable non-invasive 

swallowing sensor is proposed and validated on the large dataset. Utilization of principal 

component analysis and smoothing algorithm allowed to obtain average accuracies of 

>80% and >70% for intra-subject and inter-subject models that can be implemented 
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directly in a wearable device that automatically monitors ingestive behavior in humans. 

Such a device can potentially be used in free-living conditions improving our 

understanding of eating behaviors associated with obesity and other eating disorders and 

providing the real-time biofeedback to individuals. With the rapid progression of 

computing power available in modern ubiquitous platforms this device may potentially 

find numerous applications in research, clinical nutrition and self-monitoring of food 

intake by general population. 
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7. Overall Conclusions and Future Work 

This chapter summarizes the unique contributions presented in this dissertation and an 

overview of future work. 

7.1. Feasibility of Artifact Elimination with an Acoustical 
Swallowing Detection Method 

• Novel swallowing sound recognition methodology based on the limited receptive 

area (LIRA) neural classifier and time-frequency decomposition was proposed 

and tested in recognition of four classes of sounds that correspond to swallowing 

sounds, talking, head movements and outlier sounds with two different algorithms 

of time-frequency decomposition, short-time Fourier transform (STFT) and 

continuous wavelet transform (CWT) showing feasibility of elimination of such 

artifacts with an acoustical swallowing detection method and efficiency and 

reliability of the proposed method. 

7.2. Automatic Detection of Swallowing Events by Acoustical 
Means 

• Two novel automatic acoustical swallowing detection methods based on 

combination of mel-scale Fourier Spectrum (msFS) or Wavelet Packet 

Decomposition (WPD) and Support Vector Machines were proposed and tested 

on the data collected from 20 human subjects with 35% of the subjects being 

obese using a multi-modal data collection system designed for non-invasive 

monitoring of chewing and swallowing.  
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• The total duration of data used for training and validation was 64.5 hours 

including 9,966 swallows. To our knowledge this is the largest dataset of its kind 

collected to date. Being designed to resemble food consumption in free living our 

dataset includes sound artifacts originating from chewing of food of different 

textures, talking, head movements, occasional intrinsic sounds, and background 

noise of various origins making it also the most complicated dataset collected to 

date.  

• Effects of epoch size, level of decomposition and lagging on classification 

accuracy were studied yielding near-optimal parameter values and showing that 

msFS decomposition based methodology outperforms the WPD based one. High 

average weighted epoch recognition accuracy 96.8% was obtained for intra-visit 

individual models resulting in 84.7% average weighted accuracy in detection of 

swallowing events. 

• Study of impact of such sound artifacts as food intake, talking and background 

noise on accuracy of swallowing detection suggested robustness of the proposed 

methodology to such events as well as its ability to accurately separate 

swallowing sounds from sound artifacts that originate in respiration, talking, head 

movements, food ingestion, and ambient noise. 

• The proposed methodology was also demonstrated to work equally well for both 

obese and non-obese subjects.  
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7.3. Automatic Food Intake Detection Based on Swallowing 
Sounds 
 

• Novel fully automatic food intake detection methodology based on wearable non-

invasive swallowing sensor was proposed and tested on the data collected from 12 

subjects during food intake and resting periods. This large dataset of 44.1 hours 

with a total of 7305 swallows is derived from the original dataset used for 

validation of our automatic swallowing detection methodology is as complicated 

as the original one including the same variety of data for population with similar 

average degree of adiposity.  

• To improve the performance of automatic detection of swallowing instances 

preprocessing of msFS features using principal component analysis (PCA) and 

postprocessing of the automatic predicted epochs using a smoothing algorithm 

were proposed.  

• Average food intake detection accuracies of >80% and >70% were obtained for 

intra-subject and inter-subject models correspondingly with detection accuracies 

being comparable for obese and lean subjects.  

• These models can be implemented directly in a wearable device that 

automatically monitors ingestive behavior in humans. Such a device can 

potentially be used in free-living conditions improving our understanding of 

eating behaviors associated with obesity and other eating disorders and providing 

the real-time biofeedback to individuals. 
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• To the best of our knowledge this is the first attempt of fully automatic detection 

of food intake based on the data from a wearable non-invasive swallowing sensor. 

• Limitations inherent in two previously proposed approaches based on intake 

gestures and chewing sensors suggest that swallowing sensor may be a most 

promising option for creation of a single sensor biofeedback device. 

7.4. Future Work 

Results obtained for automatic swallowing and food intake detection presented in this 

dissertation suggest that while intra-subject models may be practically applicable at this 

point of time a separate study is needed to further improve inter-subject models. Below is 

an outline of the directions for future work regarding the proposed approach in general 

followed by discussion of possible improvements to its components.  

As a future work on the proposed approach in general, first, a new human study needs to 

be conducted to confirm the effectiveness of the proposed approach in long-term (24 

hours) and virtually unrestricted free-living conditions as opposite to laboratory settings 

of the current study. For example, a commercially available pocket-size MP3 

player/recorder can be used to record approximately a day’s worth of data from a subject. 

The swallowing sound data can captured by a miniature throat microphone similar to the 

one used in current study. The subject will be instructed to keep a very strict diary of 

every food consumption event during the day. The beginning of the data collection will 

take part in laboratory settings and will be similar in structure and duration to data 

collection visits used in current study. This data will be used for training of swallowing 

and food intake detection methodologies. After that the subject will keep wearing the 
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recorder for the rest of the day in free-living conditions and this portion of the data will 

be used to automatically detect swallowing instances and periods of food intake. Food 

intake detection accuracy will be assessed based on the subject’s diary. 

Second, using sensor fusion for food intake detection based on combined data from 

different types of sensors may be advantageous. For example, prediction model proposed 

in [Sazonov et al. 2009] was able to detect periods of food intake with average accuracy 

of 87% achieved for 30s windows based on swallows only while a similar model based 

on chews and swallows was able to achieve average accuracy of 95.5%. In [Amft and 

Tröster 2009] a model of intake cycle incorporating the data from intake gesture, chewing 

and swallowing sensor is proposed. It contains a hierarchical recognition procedure to 

identify intake cycles that can potentially compensate for individual sensor’s errors and 

help overcome their drawbacks. Such model may have potential for automatic food 

intake detection but it needs to be verified through testing. 

 As a future work on the components of proposed approach, results presented in this 

dissertation show that even with two improvements proposed for automatic swallowing 

detection methodology in [Makeyev et al. 2010] the highest per-epoch and per-swallow 

detection accuracies obtained for intra- and inter-subject models are lower than the ones 

obtained with training and validation performed on each visit separately in [Sazonov et 

al. 2010]. Several factors could be contributing to this effect besides the intra- and inter-

subject variability of swallowing sounds including inconsistencies of positioning and 

fixation of the sound sensor for different visits and subjects. Further investigation of this 

effect is needed. Subjective evaluation of inconsistencies of positioning and fixation of 
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the sound sensor found in data collected for current study can be found in Appendix B. A 

possible solution would be to modify the currently used microphone removing the arc 

and placing the sensor on a band with a partially rigid front part similar to the ones used 

in neck protectors. Placing a sound sensor in the center of such band will ensure that it 

will be located close to the trachea at constant height and that its positioning will be 

consistent. The drawback of this modification is that such band is hard to disguise and 

creation of a socially acceptable monitoring device based on such band is problematic. 

Furthermore, throat microphone used for current study has been selected while automatic 

swallowing and food intake detection methodologies were still in development. 

Microphone quality was evaluated using recordings of several consecutive swallows with 

subsequent evaluation of sound quality both subjectively (i.e. by listening to the 

recording) and objectively (by visualizing in a sound editor and computing the signal-to-

noise ratio). Only four microphones were tested located immediately below the laryngeal 

prominence and the one with the higher sensitivity to swallowing sounds and lower 

degree of sensitivity to ambient noise was selected. In future more microphones can be 

tested for automatic swallowing and food intake detection using the proposed 

methodologies in intra- and inter-subject models with highest detection accuracy being 

the selection criteria. The choice of microphones to be tested may be narrowed down 

based on the size, power consumption and sensitivity. New positioning and fixation 

methods can be tested in the same way. For example, new location on the sternum below 

the laryngeal prominence has an advantage of being sufficiently close to the source of the 

sound and the sensor can be easily hidden under large variety of clothing while in case of 

current location the microphone can only be hidden under certain type of clothing. An 
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example of potential new fixation method would be holding the microphone against the 

skin by a Band-Aid type adhesive representing an easily disguisable alternative to 

currently used band. 

Finally, an outline of potential improvements and alternatives to the algorithms 

comprising the proposed swallowing detection methodology is presented below. Out of 

all time-frequency decomposition techniques currently widely used in sound recognition 

the most promising alternative to msFS and WPD seems to be the Hilber-Huang 

Transform (HHT). Evaluation of HHT in terms of its comparison to other time-frequency 

decomposition techniques is presented in Appendix C. In future work HHT based 

features can be evaluated both on linear and mel-scale. Out of all supervised machine 

learning methods currently widely used in sound recognition the most promising 

alternative to LIRA and SVM seems to be Hidden Markov Models (HMM). Based on 

empirical risk minimization principle HMM usually show comparable or lower 

performance in direct comparison with SVM that are based on structural risk 

minimization principle controlling not only the empirical risk on the training data set but 

also the capacity of the decision functions used to obtain the risk value [Justino et al. 

2005]. However, several recently proposed HMM-SVM hybridization schemes have 

shown higher recognition rates compared to either of composing methods [Valstar and 

Pantic 2007, Krüger et al. 2005]. The same have recently been shown for SVM 

hybridization with Genetic Algorithms (GA) where GA was used to optimize both feature 

subset selection and parameters of SVM [Min et al. 2006]. 
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Overall, directions of future work outlined in this chapter should allow to improve current 

swallowing and food intake detection accuracies for both intra- and inter-subject models 

further confirming high potential of the approach proposed in this dissertation. 
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Appendix A 

Data collection protocol for the conducted human study: 

1. Check the equipment that will be used during the data collection: 

a. Check the voltage of the battery to be attached to strain sensor and attach 

it; 

b. Make sure that the switch on strain sensor is set to “ON”; 

c. Check the correctness of parameters of the Data Acquisition System; 

d. Open the Data Acquisition System (shortcut DAQ on the desktop), start 

recording data, and using the ambient microphone and beeper signal check 

that all four channels of the preamplifier are operational; 

e. Check that all the microphones that are going to be used during the data 

collection are operational; 

f. Touch the strain sensor several times and push the button several times, 

stop recording, check that recorded data is correct; 

g. Turn on the camcorder (shortcut Motion DV STUDIO LE for DV on the 

desktop), capture a short video recording, and make sure that the video is 

recorded properly; 
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2. Check the Experiment Form you are going to use. Make sure that fields of the 

form that correspond to subject ID number, investigator, date and start time of 

current experiment are filled and this information is accurate.  

3. Put on the new pair of exam gloves.  

4. Handle the food portion:  

a. Prepare the required portions (weight) of all the food items of the meal to 

be served. The deviation of up to 5% or 5 grams (whatever is smaller) is 

allowed for each food item, but try to get as close to the required weight as 

possible; 

b. For the standard size meal: 

i. Slice of cheese pizza – 80 (76 - 84) grams; 

ii. Can of yogurt – 4 oz (108-118) grams;  

iii. An apple – 80 (76 - 84)  grams (slices of the apple without the 

core); 

iv. A peanut butter sandwich – 37.5 (36 - 39) grams [about 1/2 of 

the regular peanut butter sandwich: 2 regular slices of bread of 

25 grams each and 25 grams of peanut butter]; 

v. Water – 200 (195 - 205) grams; 

c. For the large size meal: 
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i. Slice of cheese pizza – 120 (115 - 125) grams; 

ii. Can of yogurt – 6 oz; 

iii. An apple – 120 (115 - 125) grams (slices of the apple without the 

core); 

iv. A peanut butter sandwich – 50 (48 - 52) grams [about 3/4 of the 

regular peanut butter sandwich]; 

v. Water – 300 (295 - 305) grams; 

d. Make sure that all the food items are fresh and satisfy the quality 

requirements; 

e. Make sure that all the food items have appropriate temperature: 

i. Take all the food items out of the fridge; 

ii. Warm up the pizza in the microwave oven; 

5. Take off the exam gloves. You should use the same pair of exam gloves if you’ll 

need to return to handling food later.  

6. Input the initial weights of all the food items and water into the corresponding 

fields of the Experiment Form. 
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7. Check the Bite Log Sheet that you are going to use. Fill the fields that correspond 

to the subject ID and session number. Input the initial weights of all the food 

items and water into the corresponding fields of the Bite Log Sheet.  

8. Bring first subject into the lab.  

9. Describe the data collection process to the subject: 

a. Point out that all food items are to be consumed unmixed, i.e. separately; 

b. Point out that all the food items are to be consumed completely, i.e. no 

leftovers; 

c. Point out that the weight of the food item will be measured after each bite; 

d. Point out that water is to be consumed separately from food in the pauses 

between consumption of different food items; 

e. Explain the sequence of actions to the subject: 

i. 20 min period of inactivity; 

ii. Unbounded time to eat the meal of fixed size plus extra food 

items at subject’s will; 

iii. 20 min period of inactivity; 
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f. Point out that a part of data collection would involve reading aloud and 

talking, i.e. the subject would be asked questions not relevant to the 

research; 

g. Point out that the subject is encouraged to abstain from talking unless he is 

asked to talk. Variety of magazines would be provided to entertain the 

subject during the inactivity periods; 

h. Point out that the subject can’t move down his head while reading in order 

not to obscure the camcorder’s perspective of the subject’s neck. Subjects 

are encouraged to read with straight neck, holding the journal in front of 

the face; 

i. Point out that subject’s cellular phone is to be turned down during the data 

collection process. 

10. If this is the subject’s first visit, have subject read and sign Informed Consent 

Form, sign the witness field of the form. Write subject’s ID on the top of the 

Informed Consent Form. 

11. If this is the subject’s first visit, measure the subject’s height (cm) and enter the 

values of subject’s height, gender, age and ethnicity into the appropriate fields of 

the Experiment Form. 

12. Measure the subject’s weight (kg), waist and hip circumference (inch), calculate 

the BMI (shortcut BMI Calculator on the desktop), and enter the values of 
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subject’s weight, BMI, waist and hip circumference into the appropriate fields of 

the Experiment Form.  

13. If this is the subject’s first visit, fill out the Disbursement Form (name, address, 

SSN, amount to be paid is $15) and record this in the payment section of the 

Experiment Form. If this is a nonpayment visit by the subject (they get paid $15 

on first visit and $45 after completing 3 more visits) nothing is to be done. If this 

is the subject’s fourth visit, fill out the Disbursement Form (name, address, SSN, 

amount to be paid is $45) and record this in the payment section of the 

Experiment Form. Put “Participation in research” in the Explanation field of the 

Disbursement Form. 

14. If this is not subject’s fourth visit, set up date and time of the next appointment 

and input them into the appropriate fields of the Experiment Form. 

15. Allow the subject to wash his hands. 

16. Put on the new pair of exam gloves. 

17. Thoroughly wipe the contact areas (areas that are going to be in contact with the 

skin of the subject) of all the microphones and strain sensor with the alcohol 

swabs; 

18. Plug the microphones to the following connectors on the preamplifier: 

a. Combined throat-ambient microphone: throat microphone – 1L, ambient 

microphone – 1R; 
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b. Throat microphone – 2L; 

c. In-ear microphone – 2R; 

19. Locate microphones and strain sensor at proper positions and in the following 

order: 

a. Fully tape the strain sensor to the area immediately below the outer ear; 

b. Locate the combined throat-ambient microphone in the laryngeal area; 

c. Locate the throat microphone on the mastoid bone; 

d. Locate in-ear microphone in the subject’s ear; 

20. Give subject the button and explain how it should be used. 

21. Take off the exam gloves.  

22. Make sure that the door to the laboratory is closed. It should remain closed until 

the end of data collection process.  

23. Make sure that camcorder captures the subject from shoulders to the top of the 

head. Make sure that none of subjects face or neck is cut off or obscured during 

the period of video recording. 

24. Start the data acquisition process: 

a. Fill the “Identity Marker” field of the Data Acquisition System in the form 

“_x-y-z_” where x is the subject’s ID, y is the number of current data 
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collection session (1 – 4), z is the number of current recording (1 – first 

inactivity period, 2 – meal, 3 – second inactivity period);  

b. Input date and time markers to the Experiment Form; 

c. Start video, audio and strain sensor data acquisition; 

d. Place the beeper between the subject and the camcorder in such a way that 

the camcorder would capture the red led light and push the beeper button 4 

times, each time holding it for no less than 2 seconds in order to provide a 

synchronization signal; 

25. Set the timer for the first inactivity period. 

26. Ask the subject to read silently during the first half of the first inactivity period. 

27. Ask the subject to read aloud during the second half of the first inactivity period. 

28. When the first inactivity period is over, stop video, audio and strain sensor data 

acquisition. 

29. Serve the meal.  

30. If this is the subject’s second or fourth visit – turn on the noise recording! Use 

Panasonic CD stereo system to play noise. Required volume is -40 dB. Ask 

subject questions to involve him into the conversation; 

31. Start the data acquisition process: 
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a. Fill the “Identity Marker” field of the Data Acquisition System in the form 

“_x-y-z_” where x is the subject’s ID, y is the number of current data 

collection session (1 – 4), z is the number of current recording (1 – first 

inactivity period, 2 – meal, 3 – second inactivity period);  

b. Input date and time markers to the Experiment Form; 

c. Start video, audio and strain sensor data acquisition; 

d. Place the beeper between the subject and the camcorder in such a way that 

the camcorder would capture the red led light and push the beeper button 4 

times, each time holding it for no less than 2 seconds in order to provide a 

synchronization signal; 

32. Tell the subject to start eating. Measure the weight of all the food items and water 

after each bite and record this data in the corresponding fields of the Bite Log 

Sheet. Yogurt can is to be placed on the scale by operator and without the spoon! 

If this is the subject’s first visit, serve a standard size meal, point out to the subject 

that no background noise is allowed during the data collection. If this is the 

subject’s second visit, serve a standard size meal, make sure to use background 

noise and talk to the subject during the data collection. If this is the subject’s third 

visit, serve a large size meal, point out to the subject that no background noise is 

allowed during the data collection. If this is the subject’s fourth visit, serve a large 

size meal, make sure to use background noise and talk to the subject during the 

data collection. 
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33. Stop video, audio and strain sensor data acquisition. 

34. If the subject still feels hunger, serve the subject extra food items at his will. 

35. If this is the subject’s first visit, ask the subject if he would have preferred the 

proposed meal to be larger. Put the subject’s answer into the Comments field of 

the Experiment Form.  

36. Start the data acquisition process: 

a. Fill the “Identity Marker” field of the Data Acquisition System in the form 

“_x-y-z_” where x is the subject’s ID, y is the number of current data 

collection session (1 – 4), z is the number of current recording (1 – first 

inactivity period, 2 – meal, 3 – second inactivity period);  

b. Input date and time markers to the Experiment Form; 

c. Start video, audio and strain sensor data acquisition; 

d. Place the beeper between the subject and the camcorder in such a way that 

the camcorder would capture the red led light and push the beeper button 4 

times, each time holding it for no less than 2 seconds in order to provide a 

synchronization signal; 

37. Set the timer for the second inactivity period. 

38. Ask the subject to read silently during the first half of the second inactivity 

period. 
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39. Ask the subject to read aloud during the second half of the second inactivity 

period. 

40. When the second inactivity period is over, stop video, audio and strain sensor data 

acquisition. 

41. Put on the exam gloves. You may use the same pair of gloves that you used 

locating the sensors on the subject. 

42. Take microphones and strain sensor off the subject in the order opposite to the 

one that was used for putting them on. 

43. Inform the subject that the data collection is over and he may leave. 

44. Take off the exam gloves.  

45. Turn off the strain sensor and camcorder. 

46. In case the subject was not able to finish his meal, weight the leftovers of the food 

items and input the weights into the Experiment Form. 

47. Wash the cooking things and clean up the laboratory to the initial state.  

48. Fill the end time and comments fields of the Experiment Form; put Bite Log 

Sheet, Experiment Form, Disbursement Form (if applicable) and Informed 

Consent Form (if applicable) back to the cabinet. 

49. Rename of the video files (E:/data/video) in accordance with the names of the 

corresponding sound files (E:/data/sound).  
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50. Move all the significant data (3 video, 12 audio and 3 strain sensor data files) 

obtained during the data collection process to the corresponding folders of the 

drive D (ULiSATA 5 RAID501). 

51. Bring in the next subject. 
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Appendix B 

 

Even with two improvements proposed for automatic swallowing detection methodology 

in [Makeyev et al. 2010] the highest per-epoch and per-swallow detection accuracies 

obtained for intra- and inter-subject models are lower than the ones obtained with training 

and validation performed on each visit separately in [Sazonov et al. 2010]. Several 

factors could be contributing to this effect besides the intra- and inter-subject variability 

of swallowing sounds including inconsistencies of positioning and fixation of the sound 

sensor for different visits and subjects. In subjective evaluation of inconsistencies of 

positioning and fixation of the sound sensor found in data collected performed for current 

study the following hypothesis was proposed: the aforementioned decrease in recognition 

accuracy is partially due to the variation in positioning and fixation of the throat 

microphone during the data collection process. The motivation for this hypothesis is the 

following: positioning of the throat microphone was defined in the data collection 

protocol used by the operator in the following way: “Locate the combined throat-ambient 

microphone in the laryngeal area”. Such a guideline defining neither the height at which 

the microphone should be placed on the neck nor positioning of the microphone relative 

to the trachea turned out to be insufficient. Despite the fact that during the training data 

collection visit the operator was instructed on the correct positioning of the microphone, 

the high importance of positioning accuracy wasn’t emphasized enough since evaluation 

of the video footage revealed significant inconsistencies in positioning of the microphone 

for different visits of the same subject (Fig. 17) as well as clearly erroneous positioning 

(Fig. 18).  
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      a)           b)          c)       d)   

Figure 17: Examples of positioning of the throat microphone for four data collection 
visits of the same subject. 

 

 

Figure 18: Example of the incorrect positioning of the throat microphone. 
 

Furthermore, the band with a Velcro fastener that was used during the data collection 

process to fix the position of the throat microphone resulted to be inefficient as well. 

First, no guidelines were provided in the protocol on adjustment of the band resulting in a 

variety of different fittings (Fig. 17). Second, evaluation of the video footage and 

comments of the operator of the data collection process and the expert rater of the 

collected data revealed that the band turned out to be inappropriate for most skinny (Fig. 

19, a) and obese (Fig. 19, b) subjects, being too large and too small respectively to fix the 

throat microphone. Exactly the same problem was posed by the holding arc of the throat 

microphone (Fig. 17, d). 
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a) b) 

Figure 19: Examples of inefficiency of the proposed band in cases of subjects with: a) 
very low BMI, b) very high BMI. 

Third, the operator of the data collection process was changing the positioning of the 

band on demand from the subject in case the subject was feeling uncomfortable or even 

taking it off completely in case it was too small. In two cases the part of the subject’s data 

collection visits were performed without the band and in one case all of the subject’s data 

collection visits were performed without the band. We would also like to point out that 

the overall highest swallowing and food intake detection accuracy was achieved for the 

human subject who participated in the development of the data collection process and 

knew what the correct positioning and fixation of the throat microphone should be. 

Another potential explanation for this fact may be that being the part of the development 

team this subject paid more attention using the button to indicate swallowing instances 

which resulted in a more accurate score and therefore more valid training and validation 

sets of the classifier. 

Moreover, evaluation of the video footage revealed that strap was also inefficient in 

holding the throat microphone in place during the same visit (Fig. 20). 
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a) b) 

Figure 20: Example of inefficiency of the proposed band in holding the throat 
microphone in place during the same visit: a) beginning of the first session, b) end of the 

third session. 

Therefore, an important step of the future work would be empirical validation of the 

proposed hypothesis. 
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Appendix C 

Out of all time-frequency decomposition techniques currently widely used in sound 

recognition including Fast Fourier Transform (FFT), Discrete Cosine Transform (DCT), 

Discrete Wavelet Transform (DWT), etc. the most promising alternative to msFS and 

WPD seems to be the Hilber-Huang Transform (HHT). This is due to the advantage of 

wavelet-based transforms over FFT, DCT or other transforms that express a signal in 

terms of a sum of sinusoids with different frequencies and amplitudes in tiling of the 

resolution described in chapter 3 in the example of CWT and STFT. Besides, the 

underlying assumption of the Fourier-related transforms is stationarity of the data. 

Furthermore, DWT is a special case of WPD. On the other hand, HHT was developed 

especially for nonstationary data which is the case of the major part of real physical data. 

HHT is performed in two steps: first, instantaneous frequencies are calculated based on 

the empirical mode decomposition method when Intrinsic Mode Functions (IMF) are 

generated for complex data; second, a Hilbert transform converts the local energy and 

instantaneous frequency derived from the IMFs to a full energy-frequency-time 

distribution of the data [Huang et al. 1998]. The advantage of HHT over wavelet-based 

methods is claimed to be that the latter performs well on nonlinear signals with gradual 

inter-wave frequency modulation but poorly on signals that have intra-wave modulation 

(i.e., a group of signals that vary over time) while the former performs equally well on 

both allowing more accurate analysis.  

A potential disadvantage of HHT is the necessity of its licensing for both industrial and 

academic applications. 


