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a b s t r a c t

In this paper we propose a novel approach to the problem of microscrew thread parameter estimation

based on a hybrid evolutionary algorithm that combines a stochastic evolutionary algorithm with the

deterministic inverse parabolic interpolation. The proposed method uses a machine vision system

utilizing a single web camera. The hybrid evolutionary algorithm was tested on a specially created

image database of microscrews. Experimental results prove speed and efficiency of the proposed

method and its robustness to noise in the images. This method may be used in automated systems of

real-time non-destructive quality control of microscrews and has potential for parameter estimation of

different types of microparts.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

At present several prototypes of microfactories have been
developed. For example, a desktop machining microfactory
(Okazaki and Kitahara, 2000; Ooyama et al., 2000) developed by
the Mechanical Engineering Laboratory in Japan combines
machine tools such as lathe, milling machine, press machine
and assembly machines such as a transfer arm and a two-fingered
hand. This portable microfactory has external dimensions of
625�490�380 mm3. Swiss researchers developed methods of
precision motion control and microhandling principles for future
microfactories (Bleuler et al., 2000). Methodology of sequential
generations was proposed to create the required microequipment
(Kussul et al., 1996). According to this methodology, the
microequipment of each new generation has smaller dimensions
and has to be produced using the microequipment of the previous
generations. This approach, called ‘‘Micro Equipment Technology’’
(MET), allows use of low cost components in each generation of
microequipment as well as creation of microfactories that are
capable of producing low cost microdevices (Kussul et al., 2002).

Creation and evolutionary development of microfactories
assumes automation of the mass manufacturing of microparts.
In the same manner, the quality control of both microfactory
components and produced microparts should be automated.

Particularities of quality control of microparts make proble-
matic application of the quality control methods used for

conventional size mechanical parts due to smaller tolerances of
microparts in comparison with the conventional parts that
require utilization of expensive precise and ultra-precise machine
tools (Kussul et al., 2002). Quality control of micromechanical
parts such as microscrews requires estimation of parameters of
the produced micropart. Once the parameters of the micropart are
estimated several criteria can be used for the quality control. For
example, estimated parameter values can be compared to
theoretical ones or parameter ratios can be matched with a
theoretical model.

In this paper we describe a hybrid evolutionary algorithm for
estimation of parameters characterizing microscrew thread
quality. The proposed method may also be used for parameter
estimation of different types of microparts, for example, gears,
shafts, etc.

This paper is organized as follows. In Section 2 we discuss the
problem of microscrew thread parameter estimation. In Section 3
we present the detailed description of the proposed methodology.
Section 4 is dedicated to the experimental results. Discussion and
conclusions are presented in Sections 5 and 6.

2. Microscrew thread parameter estimation problem

Knowing parameters characterizing thread quality is an
important problem in mechanics. For example, according to
Russia’s oil industry statistics 50%, of the tubing string failures
happen because of the breakages of threaded joints (Proskurkin,
2003). Field performance control is one of the ways to avoid
accidents. Such quality control is important because (according to
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the same statistics) 80% of the total number of accidents of the
down-the-hole equipment happen because of the tubing string
failures (Proskurkin, 2003). Therefore, there is a great variety of
methods for thread parameter estimation in mechanics: from
simple thread gauges to complex optical comparators that use
digital readouts (Adams, 2003; Farago and Curtis, 1994). Most of
these methods are ineffective for the scale of dimensions typical
for microparts.

Mechanical methods that use thread gauges do not allow
automation of the thread parameter estimation process. More-
over, these methods are difficult to apply because, at present, the
relative precision of produced microscrews is smaller than the
one of screws of conventional dimensions. Therefore, the profile
of the real microscrew thread does not correspond completely to
the profile of the theoretical thread model due to inaccuracies of
manufacturing.

Optical comparators use overlay charts clipped to the screen of
the comparator on which an image of a threaded product is
projected and aligned to the shape of the chart to see if it meets the
specification. Such comparators are ineffective for the same reasons.

The most suitable methods for micromechanics evaluate
thread quality from binary images of the thread contour that is
extracted from the image of the microscrew thread made with
projection lighting (Vorobel’ et al., 2004). Thread parameter
estimation is performed using the continuous line that represents
the extracted thread contour. One of the most recent methods
uses the Hough transform to detect segments of straight lines on
the sides of the thread teeth (Vorobel’ et al., 2004). This method
allows estimation of the parameters of the thread for each pitch
independently. However, this approach has several drawbacks.
First, it is necessary to select a partition of the phase space
empirically, which makes process automation impossible. Second,
the method does not account for stains (for example, caused by
dust particles that stick to the surface of the microscrew) which
distort the image substantially. Due to sensitivity of the Hough
transform to noise, an image contaminated by dust specks would
require application of additional approximation methods in
problematic areas.

Another alternative is a machine vision system for micropart
manufacturing proposed in (Baidyk and Kussul, 2004). Limited
receptive area neural classifier was used to recognize the shape of
microscrews. The system had to recognize the shape of each
microscrew and to provide necessary information to correct the
manufacturing process in case of need. The prototype of the
system was tested on shape recognition of 3 mm microscrews.
Artificially created shape distortions were made by incorrect
positioning of the cutter during manufacturing. The best recogni-
tion rate of 92.5% suggests that this method is promising although
still needs improvement.

In this paper we propose a novel method for microscrew
thread parameter estimation that avoids the described problems
and allows automation of the quality control of microscrews.

3. Hybrid evolutionary algorithm for microscrew thread
parameter estimation

3.1. Data collection and preprocessing

The proposed method of microscrew thread parameter
estimation uses a machine vision system utilizing one web
camera mounted on an optical microscope. Captured images of
microscrews are then used to extract the continuous binary
contours of the thread profile (further defined as ‘‘real contours’’).
Next, the shapes of the real contours are approximated by
segments of strait lines to form ‘‘theoretical contours’’.

Continuous real contour of the thread profile is extracted in the
following way: first, Roberts’ Cross edge detection operator
(Roberts, 1965) with a pixel value threshold of 45 is applied to
the image. Second, edge thickening algorithm of cellular logic
(Baidyk and Kussul, 1999) is applied to the extracted edge in order
to fill the possible discontinuities. Third, edge thinning algorithm
of cellular logic (Baidyk and Kussul, 1999) is applied to thin the
resulting continuous contour up to a width of 1 pixel.

An example of a thread image fragment is presented in Fig. 1a.
The black circle indicates a stain on the image caused by a dust
particle. Such stains can distort the extracted contour of the
thread profile (Fig. 1b and c). The possibility of staining requires a
method that is tolerant to noisy data.

3.2. Theoretical contour

Microscrews with metric thread are unambiguously defined by
two parameters: the pitch and the height of the fundamental
triangle (Fig. 2). Intuitively it seems logical to use the
mathematical model of the metric thread as a theoretical
contour, however, it would not account for shape distortions
possible during manufacturing.

We proposed to come to the following set of thread
parameters of the theoretical contour (Table 1, Fig. 3).

Three out of four chosen thread parameters (Table 1,
thread parameters) are considered dependent in the metric
thread model, but we will consider them independent. Ratios
between the experimentally found parameter values with the
ones of the mathematical thread model can be used as criteria of
thread quality.

Fig. 1. (a) A fragment of a distorted image of the microscrew thread, (b) a

distorted image of the microscrew thread with the continuous binary contour of

the thread profile extracted, (c) continuous binary contour of the thread profile.
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Since a microscrew and its real contour can have random
position and inclination, three more parameters are required to
unambiguously determine the position of the theoretical contour in
the rectangular coordinate system (Table 1, position parameters).

Thus, the estimation procedure is realized in a seven-
parameter space.

3.3. Hybrid evolutionary algorithm

The evolutionary algorithm (EA) is a stochastic optimization
technique based on biological mechanisms of natural evolution
(Back et al., 2000). EA is robust to distorted data, and is able to
explore multimodal or non-continuous search spaces. EA quickly
finds a near-optimal solution, so it is widely used to solve
optimization problems that are difficult to solve by other methods
(Back et al., 2000).

In our model of the EA each new offspring was born from one
parent with the influence of the mutations. Each individual in
the population was presented as a set of seven genes. Each
gene corresponded to the value of one of the seven thread
parameters and was coded as a floating-point number. Initial
population was created stochastically with values of seven thread
parameters being chosen randomly from a predefined range for
each individual.

The area between the real and the theoretical contours were
used as a fitness function. This area (Fig. 4) was calculated by the
following formula:

FA ¼
XxRMax

x ¼ xRMin

ðCR½x��CT ½x�Þ
2; ð1Þ

where xRMin and xRMax are the minimal and maximal values of
the real contour abscissa, respectively; CR[x] and CT[x] stand for
the corresponding ordinate values of the real and the theoretical
contour, respectively.

The fitness function (1) works properly only in cases when the
theoretical contour completely covers the axis of abscissas and is
not suitable in the case when the theoretical contour has more
than one ordinate value for one abscissa value. For example, this
fitness function would not work in the case of microgears.

To make the proposed method applicable to a wider range of
microparts we propose another fitness function. The drawback of
the universal fitness function is that it requires more processing
power than (1). The universal fitness function calculates the
Euclidian distance from each point of the real contour to the
nearest point of the theoretical contour and uses the sum of all
such distances as the fitness value (2).

FU ¼
XNR

i ¼ 1

min
j ¼ 1;NT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxR½i��xT ½j�Þ

2
þðyR½i��yT ½j�Þ

2
q� �

; ð2Þ

where NR and NT are the number of points in the real and the
theoretical contour, respectively; xR[i] and yR[i] are the abscissa
and the ordinate values of the ith point of the real contour and
xT[j] and yT[j] are the abscissa and the ordinate values of the jth
point of the theoretical contour. The universal fitness function (2)
requires more than NT times more operations than fitness
function (1).

The evolutionary process used dynamic mutations, i.e. genes
were changed stochastically within an interval that narrows over
time according to the following formula:

P0 ¼ Pð1þxZ=SVÞ; ð3Þ

where P0 is a modified parameter value; P is a parameter value
before modification; x is a normally distributed random variable
with a mean of 0 and standard deviation 1; Z is a random variable
that takes values of 1 and �1 with 0.5 probability; SV is a positive
scale variable which increases with each new generation, thus
decreasing the search space and therefore making the solution
more precise.

We also used an elitism technique, i.e. a fixed number of the
best individuals from the previous generation were passed to the
next generation without changes.

Combining EA with local search methods to form
hybrid evolutionary algorithms (HEA) may be advantageous
(Goldberg, 1989). EA quickly converges to a near-optimal
solution, but it shows poor accuracy in reaching the optimum
precisely. Local search (LS) methods are very likely to stop at a
solution that is the closest one to the starting point. If an LS
method is started near the global optimum it would reach a
solution very close to optimal in a good time.

0.125 P

0.75 P

P 0.25 P

0.625 H H

Fig. 2. Metric thread profile: P — pitch, H — height of the fundamental triangle.

Table 1
Set of parameters of the theoretical contour.

Name of the parameter Metric symbol

(Fig. 2)

Symbolic label

(Fig. 3)

Thread parameters

1. Flat root 0.25P TP1

2. Flat crest 0.125P TP2

3. Depth of thread 0.625H TP3

4. Pitch — flat root P–0.25P¼0.75P TP4

Position parameters

5. Horizontal shift – PP1

6. Vertical shift – PP2

7. Angle between the screw axis and

the horizontal line

– PP3

Y

PP2

PP1 X

TP1

TP4
PP3

TP2
TP3

Fig. 3. Parameterization of the theoretical contour.

Fig. 4. Area between real and theoretical contours.
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Traditional HEAs apply LS methods to every solution found by
an EA. It is computationally expensive and biases the population
toward the local optima. The following hybridization method
requires less computing power: from the population of solutions
being evolved by EA, several best individuals are selected and LS
method is applied to them. Solutions found by LS are re-inserted
into the population and EA continues its work. In this case, EA is
just slightly perturbed while the local search method allows one
to decrease the time needed to reach the optimal solution and
improve accuracy. Another possible hybridization technique is
called post-hybridization (Gudla and Ganguli, 2005) and consists
in application of a LS method to some of the best individuals
obtained by EA termination of EA. A good review of hybridization
methods can be found in (Gudla and Ganguli, 2005; Yen and Lee,
1997).

In this paper we propose to use a multidimensional mini-
mization method based on the inverse parabolic interpolation as a
LS method for post-hybridization of EA. The flow chart of the
proposed HEA is presented in Fig. 5.

The parameter optimization in the proposed HEA is performed
in two consecutive steps. First EA is run in order to find an area of
the search space with high fitness values and then the local search
method is applied to the best set of parameters found by EA. Such
HEA, in contrast to LS methods, does not require a precise initial
guess and finds good solutions faster than the simple EA.

3.4. Local search method

The multidimensional minimization method based on inverse
parabolic interpolation was used as a LS method in the proposed
HEA. The choice of the LS method was influenced by the following
reasoning (Press et al., 2007). All multidimensional minimization
methods can be divided in two categories on the basis of whether

they use only evaluations of the function to be minimized or its
gradient as well. Fitness function (1) is not differentiable so we
are limited to use methods that do not use gradients. Almost all
such methods use one-dimensional minimization which can be
described as follows: given an input a function of N variables f and
N-dimensional vectors P (starting point) and n (direction) find the
scalar l that minimizes f(P+ln), then replace P by P+ln, and
replace n by ln. A multidimensional minimization can be
implemented by the following simple scheme: take the unit
vectors as a set of directions and by means of the chosen one-
dimensional minimization method move along the first direction
to its minimum; then move along the second direction to its
minimum, and so on, cycling through the whole set of directions
as many times as necessary, until the function value stops
decreasing.

Suitable methods of one-dimensional minimization include
golden section search, inverse parabolic interpolation and their
combinations, for example, Brent’s method (Press et al., 2007). In
our case we assume that EA stops at least near to the global extreme
of the fitness function and that the fitness function is approximately
parabolic in every direction in the neighborhood of the global
extreme. The argumentation to make such an assumption is the
following: proposed fitness function (1) is a numerical representation

of the integral FA ¼
R xRMax

xRMin ðCR½x�� CT ½x�Þ
2dx that suggests the

existence of a derivative of the fitness function with unknown
analytic form. The smoothness of the fitness function suggests that it
can be approximated in the neighborhood of the global extreme with
the first three terms of the Taylor’s series which means that it is
approximately parabolic in this neighborhood. Then the abscissa
value that corresponds to the extreme (minimum) of the parabola
fitted through any three points ought to lie at least very near to the
abscissa of the global minimum. Therefore, the inverse parabolic
interpolation should behave well under given assumptions.

Fig. 5. Flow chart of the proposed hybrid evolutionary algorithm (HEA).
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Let us describe in detail one cycle of the proposed local search
method applied to the best set of parameters p¼ ðpi; i¼ 1;7Þ
found by the EA.

1. For a ðpi; i¼ 1;7Þ calculate the boundary values by the
following formulas:

pL
i ¼ pið1�1=ð2þSVÞÞ

if pL
i opMin

i then pL
i ¼ pMin

i

(
ð4Þ

pR
i ¼ pið1þ1=ð2þSVÞÞ

if pR
i 4pMax

i then pR
i ¼ pMax

i

(
ð5Þ

where pi
L and pi

R stand for the left and the right boundary
values, respectively; pi

Min and pi
Max stand for the minimum and

the maximum possible values of pi; SV is a non-negative scale
variable with a value increasing with each new cycle of
multidimensional minimization method.

2. Build theoretical contours for two sets of parameters pL and pR

that consist of the same components as p except for pi that is
replaced by pi

L and pi
R, respectively; and calculate fitness

function values F(pL) and F(pR). If F(pL)oF(p) or F(pR)oF(p)
then replace set p by one of the two sets pL or pR that
corresponds to the smaller value of the fitness function.
Otherwise calculate the abscissa value corresponding to the
minimum of the parabola fitted through F(pL), F(p) and F(pR) by
the following formula:

pi
� ¼ pi�

1

2

ðpi�pL
i Þ

2
½FðpÞ�FðpRÞ��ðpi�pR

i Þ
2
½FðpÞ�FðpLÞ�

ðpi�pL
i Þ½FðpÞ�FðpRÞ��ðpi�pR

i Þ½FðpÞ�FðpLÞ�
ð6Þ

If pi
nopi

Min or pi
n4pi

Max or if pi
Minopi

nopi
Max but F(pn)4F(p)

then the set p remains unchanged. Otherwise, replace p with
the set pn that consists of the same components as p except for
pi that is replaced by pi

n.
3. Take parameter pi +1 if i¼ 1;6 and repeat from 1, otherwise

finish the minimization cycle.

The local search method stops when the sum of the absolute
values of shifts in all the parameters for one cycle is smaller than
some predefined threshold value or the maximum number of
minimization cycles is reached.

4. Results

The main goal of the performed experiments was to check the
effectiveness and the speed of the proposed method in the
microscrew parameter estimation as well as to make certain of
the method’s robustness to noise in the image. Another goal
was to compare the proposed HEA with the simple EA in
order to estimate the performance gain achieved by hybridization.

Experiments were performed on the image database of 10
microscrews with a diameter of 2 mm and a pitch of 0.4 mm. Pixel
dimensions of the database images were of 480�640 pixels. The
proposed HEA and EA were implemented in software in Borland
C++ Builder 6.0 and tested on a computer with an AMD Athlon 64
X2 6000+3.0 GHz processor and 2 GB RAM. The following set of
parameters was used during all the experiments: the number of
individuals in generation is 1000; the number of best fitted
individuals used to create a new generation is 100; the number of
best fitted individuals to be passed to the next generations
without changes (elitism technique) is 100; the number of runs of
the inverse parabolic minimization based LS method is 10. Time
needed to create one generation, build corresponding theoretical
contours, calculate fitness function values and select best fitted
individuals with given parameters was approximately 1.2 s.
Time needed for execution of 10 runs of LS method was
approximately 12 s.

Same experiments were performed utilizing simple EA and
HEA. For each number of generations 50 experiments were
performed to obtain statistically reliable results. Comparison of
results obtained for different numbers of generations for the
worst case scenario, the distorted real contour (Fig. 1), is
presented in Table 2. The distorted real contour (Fig. 1) is
approximated to show that the proposed method is robust to the
noise in the image and therefore to the distorted data. Paired
t-test (Montgomery, 2004) was used to evaluate significance of
difference in mean fitness function values obtained utilizing EA
and HEA with an alternative of mean fitness function value for
EA being higher than the one for HEA. P-values are presented
in Table 2.

Dependency of the mean value of fitness function that
represents deviation between the real and the theoretical
contours on the number of generations is approximately hyper-
bolic both for EA and HEA. Graphical representation of this
dependency is presented in Fig. 6.

Examples of the distorted real contour (Fig. 1) approximation
for different numbers of generations are presented in Figs. 7–9.

5. Discussion

The use of HEA improves the results for all tested numbers of
generations (Table 2). The mean rate of improvement depends on
the number of generations with the most significant improve-
ment (75.14%) achieved for the lowest number of EA generations
(5). Results of paired t-test indicate that this improvement is
significant for all the numbers of generations except of two
highest ones (75, 100).

Taking into account that in our experiments HEA takes as
much time as EA with 10 additional generations we can conclude
that impact of the LS is large but rather short-lived. That is,

Table 2
Results of approximation using EA and HEA for different numbers of generations.

Number of

generations

Fitness function (EA) Fitness function (HEA) P-value for paired

t-test

Mean rate of

improvement

HEA vs. EA (%)

Mean Standard deviation Mean Standard deviation

5 45962.86 18608.29 11426.42 3063.99 o0.001 75.14

10 20632.72 7222.33 9681.26 2035.21 o0.001 53.08

15 11969.9 2651.49 8555.04 1697.33 o0.001 28.53

20 11396.98 3254.26 8107.1 1488.20 o0.001 28.87

25 9508.66 1837.12 7859.38 1450.80 o0.001 17.35

50 7549.88 1532.09 6674.68 815.55 0.001 11.59

75 7131.7 1247.08 6948.76 1201.73 0.217 2.57

100 6589.62 842.28 6557.14 878.95 0.423 0.49
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hybridization is most effective in terms of time expenditure for
lower numbers of generations. However, even in cases of the
higher number of generations the proposed hybridization tech-
nique allows to improve the obtained results. The final decision
on balance between the number of EA generations and the
number of LS runs is based on current time constraints. For
example, utilization of the higher number of runs of the LS
method may be advantageous for tasks with no strict time
constraints. In our case, the time needed to manufacture
one of the microscrews that were used in experiments is
approximately 2 min. Therefore, even with the demand of work-
ing in real-time the highest precision of parameter estimation can
be assured.

To increase the convergence speed and, therefore, ensure
suitability of the proposed method for real-time thread estima-
tion of the microscrews produced by a microfactory we used hard
selection allowing survival of only the best fitted individuals. Such
selection affects the balance between exploration and exploita-
tion towards exploitation forcing the search process into the
gradient direction and resulting in a path oriented, exploiting
search (Back and Hoffmeister, 1991). Exploration of the search
space in our case is ensured by stochastic creation of initial
population and the mutation mechanism.

At this point of time there is no publicly available image
database of microscrew threads. Creating our image database we

tried to keep it as consistent as possible with the ones used in
Vorobel’ et al. (2004) and Baidyk and Kussul (2004) in terms of
size of the microscrews (2–3 mm), the way of taking pictures
(web camera mounted on an optical microscope), etc., in order to
make the obtained results comparable.

The proposed method outperforms the existing methods.
Namely, the thread estimation method that is most suited for
micromechanics is Hough transform-based method (Vorobel’
et al., 2004). Both methods perform thread parameter estimation
using the continuous line that represents the thread contour
extracted from a binary image but the Hough transform-based
method requires empirical phase space partitioning which makes
the estimation automation impossible. The method proposed in
this paper does not pose any problem for automatic implementa-
tion. Furthermore, while Hough transform is sensitive to noise
and may not work well with the images distorted with stains (for
example, caused by dust particles) in this paper we show an
example of our method performing successfully on such a
distorted image.

Overall, experimental results show that the proposed
method is fast and effective in estimating thread parameters of
microscrews and robust to the noise in the images. These
properties make our method suitable for creation of automated
systems of real-time non-destructive quality control of both
microfactory components and produced microparts.

0
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Fig. 6. Dependency of the mean value of fitness function on the number of generations for the simple evolutionary algorithm (EA) and for the proposed hybrid evolutionary

algorithm (HEA).

Fig. 7. Result of HEA approximation of the distorted real contour with the theoretical one (number of generations¼5, fitness function¼15,253).

Fig. 8. Result of HEA approximation of the distorted real contour with the theoretical one (number of generations¼25, fitness function¼8358).

Fig. 9. Result of HEA approximation of the distorted real contour with the theoretical one (number of generations¼100, fitness function¼5844).
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6. Conclusions

In this paper we propose a novel approach to the problem of
microscrew thread parameter estimation based on a hybrid
evolutionary algorithm that combines a stochastic evolutionary
algorithm with deterministic inverse parabolic interpolation. The
proposed method was tested on real data obtained from the image
database of 10 microscrews with a diameter of 2 mm and a pitch of
0.4 mm. This method may also be used for parameter estimation of
different types of microparts, such as microgears, etc.

The task of parameter estimation of microparts is complicated
by lower relative precision which renders many traditional
methods of quality control virtually useless. Application of
machine vision systems is also complicated because of the stains
on images caused by dust particles that distort the image
substantially. The proposed method is tolerant to both lower
relative precision and staining of the image.

Experimental results show that the proposed method is fast
and effective and may be used in automated systems of real-time
non-destructive quality control of microscrews.
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