
obesity 1

nature publishing group articles
Methods and techniques

IntroductIon
Rates of overweight and obesity are increasing globally. 
The World Health Organization estimated that there were 
~1.6  billion overweight and at least 400 million obese adults 
worldwide in 2005 and that there will be 2.3 billion overweight 
and 700 million obese adults worldwide by 2015 (ref. 1). 
Overweight and obese individuals have an increased risk of 
developing chronic diseases such as type 2 diabetes, cardiovas-
cular disease, and cancer (2–5).

Overweight and obesity result from an imbalance between 
energy intake and energy expenditure, but the etiology of that 
imbalance and the underlying mechanisms are still incom-
pletely understood. Our physiology, our behavior, and our 
environment must all be considered in understanding the eti-
ology of obesity. There is a debate about the relative importance 
of genetic/physiological factors and environmental factors in 
the etiology of obesity. Clearly there are genetic/physiological 
contributions to obesity (6–9) but some weight gain can be 
attributed to an environment that provides an abundance of 
inexpensive, highly palatable, and energy dense foods, while 
requiring only minimal levels of physical activity (10–13). 
Part of our lack of understanding of the etiology of obesity is 

the fact that most weight gain likely occurs due to very small 
differences between energy intake and energy expenditure, 
necessitating very accurate measurements of energy intake and 
energy expenditure.

A variety of methods are available for accurate and objec-
tive measurement of energy expenditure and its compo-
nents, including doubly labeled water, indirect calorimetry, 
and accelerometry (14–16). These techniques can be used 
in the laboratory and in free-living populations. Energy and 
food intake can be accurately monitored in the laboratory by 
directly measuring consumed food. It is currently not possible 
to accurately monitor food intake in free-living populations. 
Several methods have been proposed to measure free-living 
food intake including observation, weighed food records, esti-
mated records, diet history, food-frequency questionnaires, 
food recall methods, etc. (17). In a review of 43 studies com-
paring these methods to indirect measurement using doubly 
labeled water, the majority suffered from underestimation of 
energy intake on the order of 0.83 (ratio of intake estimate to 
energy expenditure) (18).

There is an urgent need for innovative strategies for the accu-
rate assessment of free-living energy intake and monitoring of 
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ingestive behavior in humans. The goal of this study is to explore 
whether accurate and objective information about ingestive 
behavior, such as detecting short episodes of food intake, dif-
ferentiating between liquid and solid foods, and estimating the 
mass of food intake could be obtained by measuring chews and 
swallows. As chewing and swallowing events can potentially be 
captured by noninvasive wearable sensors, this could lead to 
the first accurate method of assessing free-living food intake. 
This method may lead to a more objective direct measurement 
of total energy intake when combined with other methods 
(e.g., electronic food diaries, food photography, etc.).

Methods and procedures
 The models reported in this paper were built using data from a 
human study described previously (19). A total of 20 volunteers 
(11 men and 9 women) with an average BMI of 29.0 ± 6.4 partici-
pated in four visits, each of which consisted of: (i) a 20-min resting 
period; (ii) a meal period of unlimited time; (iii) a second 20-min 
resting period. Two fixed sizes of the meal (standard and large) 
were used with the large size being 50% bigger than the standard. 
The food selection during experiments represented a wide range of 
food properties such as crispiness, moistness, softness/hardness, and 
tackiness that could impact chewing and swallowing. The provided 
drink was water. To evaluate the impact of a meal-time conversa-
tion on  patterns of chews and swallows, the subjects were involved 
in a dialogue with a member of the research team during the second 
and fourth  visits and ate in silence during the first and third visits. 
Overall, the human study resulted in 66 h of monitored activity, and 
captured a total of 10,099 swallows and 46,238 chews. We certify 
that all applicable institutional and governmental regulations con-
cerning the ethical use of human volunteers were followed during 

this research. The Institutional Review Board at Clarkson University 
approved the study, and all subjects signed informed consent forms.

The time series of chews and swallows were used to build prediction 
models centered on the following hypotheses:

1. The frequencies of swallowing above a threshold T INGEST or 
 presence of chewing correspond to food ingestion;

2. The frequencies of swallowing above a threshold TLIQUID > TINGEST-
and absence of chewing correspond to liquid ingestion;

3. The number of chews and swallows is proportional to the ingested 
mass.

timescale selection
The predictive models assigned a class label to a time window of certain 
length (a decision epoch). Every epoch in a subject’s visit was assigned 
a label from the set {“no intake,” “intake”} indicating the state of food 
intake. Epochs labeled as “intake” were further labeled from the set 
{“solid,” “liquid”} thus differentiating between food types. The choice 
of epoch duration was an important factor defining the time resolution. 
Naturally, a shorter epoch should provide better time resolution and, in 
theory, detect shorter events. Such capability would be very important 
for monitoring of snacking habits. At the same time, the shortest epoch 
duration is limited by the minimal detectable changes in the predictor 
variables.

To estimate the duration of a decision epoch we define the instantane-
ous swallowing frequency: ISFi =60/(ti − ti−1) (sw/min), where t is time of 
swallow occurrence in seconds, i =2,…, N and N is the total number of 
swallows. In other words, this measure provides instantaneous informa-
tion on the number of swallows per minute. A graph of ISF for a subject’s 
visit (Figure 1a) provides an intuitive illustration of ISF’s predictive abili-
ties. The duration of a decision epoch should be long enough to detect 
an increase in the number of swallows associated with food consumption 
and short enough to provide adequate time resolution for detection of 
food intake. An average of ISF over duration of an epoch is defined as 
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Figure 1 Instantaneous swallowing frequency (ISF) is a key predictor for differentiation between intake/no intake of food and solid/liquid food. (a) ISF 
graph clearly indicates ingestion during the course of a meal. Resting periods (no intake) are labeled 1, intake of pizza: 2, yogurt: 3, apple: 4, peanut 
butter: 5, water: 6. (b) Population-based box plot of ISF for no intake/solid food/liquid. (c) Probability density estimations for 30-s EISF define optimal 
Bayesian thresholds TINGEST for food intake and TLIQUID for liquid intake detection in the group model. (d) Ratio of mean EISF for periods of no food 
intake to mean EISF of solid food intake and mixed solid/liquid intake. Data shown for 69 complete meals from 18 subjects.
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EISFj. To use EISFj as a predictor variable, the duration of a decision 
epoch will need to be greater than lower bound on ISF for ingestion 
(established experimentally as the 1st percentile of ISF during food intake 
ISFLB

FOOD), which equals ~2 sw/min. Experimental data (Figure 1b) also 
show that for periods with no ingestion the median ISF ≈ 2 sw/min, thus 
leading to a conclusion that decision epoch length of 30 s is the most 
appropriate one, providing the best trade-off between recognition 
 accuracy and time resolution.

Group model for detection of food intake
Food ingestion can be identified by swallowing alone or by a combi-
nation of chewing and swallowing. Chewing by itself cannot identify 
intake of liquids and thus is not considered. Recognition of food intake 
with swallowing frequency as a predictor can be performed on a model 
(see Supplementary Table 1 online, model 1) that uses Bayes optimal 
threshold (20) TINGEST, which defines an optimal decision boundary 
between the classes of “intake” and “no intake.” Food intake is detected 
if the swallowing frequency is greater or equal than the threshold. This 
prediction model is based on population-based probability density esti-
mates (21) and therefore is termed a group model. The decision thresh-
old TINGEST = 4 sw/min was established at the intersection of probability 
density estimates for “no intake” and “solid food” (Figure 1c). Accuracy 
of prediction was calculated based on the standard statistical definitions 
of sensitivity and specificity (22). For food intake detection, the group 
model was capable to achieve an average accuracy of 82% (Table 1).

Floating average models for detection of food intake
Accuracy of detection of food ingestion was further improved by taking 
into account interindividual variability in swallowing rates. The ratio of 
EISF during resting to EISF during solid food intake (Figure 1d) has a 
well-defined upper bound of ≈0.5, which means that regardless of the 
absolute value of resting EISF, the swallowing frequency during food 
consumption is approximately twice as high. A more accurate floating 
average model (see Supplementary Table 1 online, model 2) can be 
formulated with the decision threshold T INGEST

FL  being a product of a 
floating average of the swallowing frequency over several epochs and a 
scaling factor α, which sets the threshold at a certain level above the 
floating average. This model self-adjusts to individual variations in 
swallowing rates and thus is expected to perform better than the group 
model, which is based on population statistics. Training and validation 
of the floating average model demonstrated 87% accuracy of food 
intake detection and a reduced variation in prediction rates among 
subjects.

A floating model can also incorporate chewing as a binary indicator 
of food intake (see Supplementary Table 1 online, model 3). Although 
in practical terms this requires an additional sensor that reports on the 
state of chewing (“chewing” or “no chewing”) the advantage is a higher 
accuracy of detecting intake of solids. Incorporating chewing increased 
the average accuracy to 95.5% (Table 1). Such high accuracy for 30-s 
epochs should be sufficient for detection of most short-term events asso-
ciated with snacking. An interesting observation is that, with the inclu-
sion of chewing, the decision of food intake for solids relies heavily on 

the presence of chewing while a higher threshold (α ≈ 1.7) for swallowing 
frequency captures the consumption of liquids.

Models for differentiation of solids and liquids
The models for differentiation of liquid and solid foods were built 
using the same principles as models for detection of food intake. The 
group model (see Supplementary Table 2 online, model 1) based 
on the optimal Bayes threshold TLIQUID = 12 sw/min (Figure 1c) 
resulted in 82.2% average accuracy. The floating average model 

table 1 sensitivity, specificity, and confidence intervals of predictor models

Model Sensitivity (95% confidence interval) Specificity (95% confidence interval)

Group model of intake detection 73.4% (72.8–74.0%) 90.6% (90.2–91.0%)

Floating average model of intake detection 83.0% (82.7–83.3%) 91.0% (90.8–91.2%)

Floating average model of intake detection 
incorporating chewing

95.0% (94.8–95.1%) 96.0% (95.9–96.1%)

Group model, solids vs. liquids 74.8% (73.6–75.9%) 89.61% (88.2–89.9%)

Floating average model, solids vs. liquids 71.3% (70.2–72.4%) 93.8% (93.6–93.9%)

Floating average model incorporating chewing,  
solids vs. liquids

95.5% (95.1–95.8%) 91.1% (90.8–91.3%)
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Figure 2 Average mass per swallow for solids and liquids and average 
mass per chew for solids are the key predictors in estimating the mass 
of ingested food. (a) Average mass per solid food swallow per subject 
arranged by subject’s BMI. (b) Average mass per chew per subject 
arranged by subject’s BMI. (c) Average mass per liquid swallow per 
subject arranged by subject’s BMI.
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(see Supplementary Table 2 online, model 2) did not significantly 
improve the average recognition accuracy resulting in 82.5% aver-
age accuracy. However, a floating average model that included chew-
ing (see Supplementary Table 2 online, model 3) made a dramatic 
improvement in accuracy. This could be expected because liquid con-
sumption results in a high swallowing rate easily exceeding the inges-
tion threshold but it is quite uncommon to chew liquids. The model 
incorporating chewing produced 93.3% average accuracy. Similar to 
the model for detecting food ingestion, introducing chews into the 
decision rule increased the swallowing threshold (α ≈ 2.3) attributing 
solid food intake to the presence of chewing and intake of liquids to 
high swallowing rates.

Mass prediction models
The third study hypothesis was tested by showing that chews and swal-
lows can predict the total ingested food mass with reasonable accuracy. 
The mass prediction model for solid foods is based on a simple linear 
model using the total number of chews and swallows associated with a 
period of ingestion as predictors. Predicted mass of solid food was com-
puted as M M N M NS

S= 0.5( + )SW SW CHEW CHEW× ×  where MS
SW is sub-

ject’s average mass per swallow of solid food, NSW is total number of 
swallows for a period of solid food intake, MCHEW is average mass per 
chew and NCHEW is total number of chews. The MS

SW and MCHEW are indi-
vidual statistical estimates of the average mass consumed in a single 
swallow or a chew (see Supplementary Appendix 1 online).

The model for predicting ingested mass of liquids used only swallows 
as liquids do not involve chewing: M M NL

L SW SW= ×  where ML is pre-
dicted mass of liquid and NSW is the total number of swallows for liquid 
intake. However, absence of chewing was not the only reason to have a 
separate model for liquid intake. Our results show that the average size 
of a swallow (Figure 2a,b) is significantly larger (P < 0.001) for liquids 
( ML

SW 17.8g≈ ) than for solids (MS
SW 6.08g≈ ). Therefore, a prediction 

model taking into account differentiation between solids and liquids is 
needed for higher accuracy. The population means of mass per swallow 
and mass per chew are not representative of subject’s individual means 
due to observed high intersubject variability (Figure 2a–c). This suggests 
a need for individual- rather than population-calibrated models. Another 
interesting observation is that mass per swallow and mass per chew have 
no obvious correlation with subject’s BMI.

The accuracy of mass prediction for solid and liquid foods was 
 estimated by sixfold cross-validation (23) on the data from 16 subjects 
with available four visits. The error was estimated as an absolute value of 

the percentage difference to the real weight of the food. The mass model 
of solid food intake achieved 91.79% average accuracy (Figure 3a,b). 
The mass model for liquid intake achieved 83.76% average accuracy. 
Lower accuracy of predicting mass of liquids could be attributed to 
the fact that the liquid ingestion model is based only on swallowing 
counts while the accuracy of the solid ingestion model is improved by 
taking chews into account. It should be noted that other parameters of 
ingestion such as duration of a swallow, total ingestion time, etc. could 
potentially be factored in to improve accuracy.

dIscussIon
The results suggest that accurate capturing of chewing and swal-
lowing events could lead to development of a novel method of 
accurately measuring human eating behavior and food intake. 
This in turn could substantially improve our ability to study 
the eating behaviors associated with obesity.

Based on the reported results, we estimate that measuring 
chews and swallows can achieve >95% accuracy in detection 
of food ingestion on short 30-s decision epochs, which should 
be sufficient to capture short events of  snacking; differenti-
ate between solid foods and liquid foods with >91% accuracy; 
and estimate mass of solid food intake with >91% accuracy and 
mass of liquids with >83% accuracy. These numbers are likely 
to improve with development of more sophisticated and self-
 adjusting individualized prediction models. However, the current 
accuracy of detecting ingestion is sufficient for reliable behavio-
ral monitoring and providing information on patterns of food 
intake. Further research is needed to improve accuracy of mass 
prediction, potentially achieved through incorporation of more 
features such as time of chewing and duration of swallowing. The 
advantages of using chews and swallows for monitoring of inges-
tive behavior include: (i) a more objective means of monitoring 
of food intake than methods currently available; (ii) the ability 
to provide an accurate assessment of the daily pattern of eating 
and drinking with a high time resolution (e.g., 30 s in this study); 
(iii) information about solid vs.  liquid  consumption; (iv) accurate 
estimates of amount of food eaten; and (v) potential for utilizing 
this method in a wearable noninvasive device.

We also show that detection of food intake and differentia-
tion of liquid/solid food can be performed by monitoring of 
swallowing alone though the overall accuracy is reduced. This 
may be important from the perspective of developing a sim-
ple biofeedback device to monitor food ingestion and provide 
feedback in a manner similar to that of a pedometer. Utilizing 
just one sensor may significantly simplify application of the 
device and reduce costs. We believe that such a device may 
be valuable for continuous monitoring of ingestive habits and 
adaptation of the lifestyle.

The further improvements of this method will likely result in 
greater accuracy and utility. For example, the microstructure 
of a meal (i.e., the specific sequence of chews and  swallows) 
may be indicative of the type of food being consumed (23). 
Alternatively, food type may be reported by a high-tech 
electronic nose, through a food diary or automatic food 
photography.

Additional increases in prediction accuracy in detecting chew-
ing, swallowing, and ingested mass may potentially be achieved 
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by involving more of the features characterizing ingestion: time 
of chewing and duration of swallowing, chewing frequency, etc. 
to name a few. The algorithms presented here may be combined 
in a number of ways, which still need to be studied.

In this study, the scores of chews and swallows were obtained 
manually from the signals captured by video, sound, and other 
sensors (19). To be practically applicable in free-living condi-
tions, the method of capturing chews and swallows would have to 
rely on a reduced set of measurements that can be automatically 
processed by a wearable computing platform (24). An important 
part in our research is dedicated to building noninvasive wear-
able sensors and related signal-processing and pattern recogni-
tion methods for automatic detection of swallowing instances 
and periods of chewing, thus not requiring a person to manually 
score the data. In our publications (19,25), we have shown that 
swallowing events can be identified by a miniature microphone 
detecting a specific sound of deglutition and chewing events can 
be detected by a strain sensor positioned behind the outer ear. 
These sensor modalities  represent just a few of the choices that 
can be explored for design of an inconspicuous wearable device 
that would detect and characterize food ingestion by measur-
ing chews and swallows. Such a wearable device can be used for 
objective monitoring of ingestive behavior of a free-living popu-
lation. As such a technique would not require a conscious effort 
on the part of the user, we may expect a reduced observation 
effect, though this issue will require a separate study.

In summary, we have presented a rationale and  preliminary 
results for a novel method of accurately assessing inges-
tive behavior in free-living humans based on chewing and 
swallowing information. This method has the potential to 
improve our understanding of human eating behaviors asso-
ciated with obesity.

suppleMentary MaterIal
Supplementary material is linked to the online version of the paper at  
http://www.nature.com/oby
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