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Abstract   Two neural network based vision subsystems for image recognition in 
micromechanics were developed. One subsystem is for shape recognition and 
another subsystem is for texture recognition. Information about shape and texture 
of the micro workpiece can be used to improve precision of both assembly and 
manufacturing processes. The proposed subsystems were tested off-line in two 
tasks. In the task of 3mm screw shape recognition the recognition rate of 92.5% 
was obtained for image database of screws manufactured with different positions 
of the cutters. In the task of texture recognition of mechanically treated metal 
surfaces the recognition rate of 99.8% was obtained for image database of four 
texture types corresponding to metal surfaces after milling, polishing with 
sandpaper, turning with lathe and polishing with file. We propose to combine 
these two subsystems to computer vision system for manufacturing of micro 
workpieces. 

1 Introduction  

A computer vision system permits one to provide the feedback that can be used to 
increase the precision of the manufacturing and assembly processes [1], [2]. The 
structure of microfactory which includes the computer vision system consisting of 
a camera and a computer is presented in Figure 1. Such computer vision system 
can be used in low cost micromachine tools [1], [2]. 

A method of sequential generations was proposed to create such 
microequipment [2]-[4]. According to this method the microequipment of each 
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generation has the sizes smaller than the sizes of the equipment of previous 
generations. This approach allows us to use low cost components for each 
microequipment generation and to create the microfactories capable to produce the 
low cost microdevices.  

To preserve a high precision of the microequipment it is necessary to use 
adaptive algorithms of micro workpiece production. The algorithms based on the 
contact sensors were tested and showed good results [2]. The neural network 
based vision system provides much more extensive possibilities to improve the 
manufacture and assembly processes [1]. 

Figure 1 The structure of microfactory with computer vision system 

Specific projects on creation of a microfactory based on miniature 
micromachine tools were started in several countries including Japan [5] and 
Switzerland [6]. One of the main problems of such microfactories is the problem 
of their automation on the basis of vision systems. There are different approaches 
to construction of a computer vision system for this purpose [1], [7] - [9]. 

We propose computer vision system based on neural network (Figure 2) that 
contains three subsystems: shape recognition subsystem, texture recognition 
subsystem and microassembly subsystem.  

In this article we describe only two subsystems: shape recognition subsystem 
and texture recognition subsystem, they differ in the type of neural classifier. The 
first subsystem is based on the Permutation Coding Neural Classfier (PCNC) and 
the second one is based on the Limited Receptive Area (LIRA) neural classifier. 
We present preliminary results of their off-line testing in two recognition tasks. 

In the first task of shape recognition of micro workpieces we tested our 
subsystem on the image database which contains images of four classes of 3mm 
screws manufactured with different positions of the cutter: one class with correct 
position and other three with different incorrect positions. Incorrect cutter position 
leads to the incorrect shape of the screw. The subsystem had to recognize the class 
of the image. This information can be then send to the microfactory and used to 
correct the cutter position.  
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In the second task of texture recognition of mechanically treated metal surfaces 
we tested our subsystem on the image database which contains images of four 
texture types corresponding to metal surfaces after milling, polishing with 
sandpaper, turning with lathe and polishing with file. 

Figure 2 The structure of computer vision system 

 Due to the changes in viewpoint and illumination, the visual appearance of 
different surfaces can vary greatly, which makes their recognition difficult [10]. 
Different lighting conditions and viewing angles affect the grayscale properties of 
an image due to such effects as shading, shadowing, local occlusions, etc. The real 
images of metal surfaces obtained in industrial applications have all these 
problems. Moreover, industrial environments pose some additional problems. For 
example, a metal surface can have dust on it. Promising results were obtained in 
both mentioned tasks. 

2 Micro Workpiece Shape Recognition Task 

It is possible to use adaptive cutting process to increase the precision of 
micromachine tools [2]. Let us consider a lathe equipped with one TV camera 
(Figure 3). The images obtained by the TV camera could be used to evaluate the 
measurements of partially treated workpieces. Such evaluation can be used to 
make corrections to the cutting process, for example, to correct the position of the 
cutting tool relatively to the workpiece (Figure 4). In this position TV camera can 
give useful information about the cutting process, for example, the chips 
formation, the contact of the cutter with the workpiece, etc. The images of 
workpieces are to be recognized with the image recognition subsystem. We 
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propose to create such recognition subsystem on the basis of the neural network 
with permutation coding.  

 

Figure 3 The lathe equipped with TV camera 

 

Figure 4 Position of the cutting tool relatively to the workpiece 

The task of shape recognition is well known [11]. In our case recognition of 
images of micro screw is based on the recognition of its shape or profile. The 
contours of the screw image are to be detected and this representation serves as 
input of the recognition subsystem.  

The proposed vision subsystem is based on the neural network with 
permutation coding technique described in [12], [13]. This type of neural networks 
showed good results in handwritten digit and face image recognition tasks. In this 
work we tested it in micromechanical applications. 

2.1  Permutation Coding Neural Classifier 

A Permutation Coding Neural Classifier (PCNC) was developed as a general 
purpose image recognition system. It was tested on the MNIST image database of 
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handwritten digits and ORL image database of faces, and showed good results 
[12]- [14].  

The structure of PCNC is presented in Figure 5. The image is input to the 
feature extractor. The extracted features are applied to the encoder input. The 
encoder produces the output binary vector of large dimension, which is to be 
presented to the input of one-layer neural classifier. The classifier output 
represents the recognized class. 

Figure 5 The structure of the Permutation Coding Neural Classifier (PCNC) 

Figure 6 Example of the initial image 

An initial image (Figure 6) is to be input to the feature extractor. The feature 
extractor starts with selection of specific points on the image. Various methods of 
selection of specific points can be proposed. For example, contour points can be 
selected as specific points. 

   We propose to select specific points in accordance with the following 
procedure. For each set of four neighboring pixels we calculate the following 
expressions: 

d1 = 11 ++− jiij brbr , 

d2 = jiij brbr 11 ++ − ,       (1) 
)d,dmax( 21=Δ , 

where brij is the brightness of the pixel (i,j), d1 , d2 are the differences of the 
values of two opposite pixels. 

If (Δ >B), then pixel (i,j) is selected as specific point of the image, where B is 
the threshold for selection of specific points. 

Each feature is extracted from the rectangle of size wh ∗ , which is built around 
each specific point (Figure 7). The p positive and the n negative points determine 
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one feature. These points are randomly distributed in the rectangle wh ∗ . Each 
point Prs has the threshold Trs that is randomly selected from the range: 

Tmin  ≤  Trs  ≤  Tmax,       (2) 
where s stands for the feature number and  r stands for the point number. 
The positive point is active only if on the initial image it has brightness: 
brs ≥ Trs.        (3) 
The negative point is active only if on the initial image it has brightness: 
brs  ≤  Trs.        (4) 
The feature under investigation exists in the rectangle if all its positive and 

negative points are active. In the opposite case the feature under investigation is 
absent in the rectangle. 

The encoder transforms the extracted features to the binary vector: 
V = {vi} (i  = 1, …, N), 
where vi = 0 or 1. For each extracted feature Fs the encoder creates an auxiliary 

binary vector:  
U = {ui} (i  = 1, …, N), 
where ui  = 0 or 1.  

Figure 7 The specific points selected by the feature extractor 

A special random procedure is used to obtain the positions of ones in the vector 
Us for each feature Fs. This procedure generates random numbers in the range 
[0,N] (N is the vector size that can be changed from 64000 to 512000 for our 
neural classifiers). Each number corresponds to position of one in vector. This 
procedure generates the list of the positions of ones for each feature and saves all 
such lists in the memory. We term vector Us as the “mask” of the feature Fs. To 
create this vector it is necessary to take the positions from the list and to fill them 
with ones filling the rest of positions with zeros. 

In the next stage of encoding process it is necessary to transform the auxiliary 
vector U to the new vector U* which corresponds to the feature location in the 
image. This transformation is to be performed with permutations of components of 
vector U (Figure 8). The number of permutations depends on the feature location 
on the image. The permutations in horizontal (X) and vertical (Y) directions are 
different permutations. In Figure 8 an example of permutation pattern for 
horizontal (X) direction is presented. 
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Figure 8 Permutation pattern for horizontal (X) direction 

Same feature can have different locations on the image. Such feature will have 
different binary code for each location. For two locations of the same feature the 
binary codes must be strongly correlated if the distance between the feature 
locations is small and must be weakly correlated if the distance is large. Such 
property can be obtained with the following procedure. 

To code the feature Fs location on the image it is necessary to select the 
correlation distance Dc and calculate the following values: 

X = j / Dc, 
E(X) = (int)X,        (5) 
R(X) = j ─ E(X) • Dc, 
Y = i / Dc, 
E(Y) = (int)Y        (6) 
R(Y) = i ─ E(Y) • Dc, 

Px = 
cD

N)X(R •
,       (7) 

Py = 
cD

N)Y(R •
,       (8) 

where E(X) is the integer part of X; R(X) is the fraction part of X; i is the 
vertical coordinate of the detected feature; j is the horizontal coordinate of the 
detected feature, N is the number of neurons. 

The original mask of the feature Fs is considered as a code of this feature 
located at the left top corner of the image. To shift the feature’s location in the 
horizontal direction it is necessary to perform its permutations E(X) times and to 
make an additional permutation for Px components of the vector. After that, it is 
necessary to shift the code to the vertical direction performing its permutations 
E(Y) times and an additional permutation for Py components. 

The structure of the proposed recognition system is presented in Figure 5. The 
system contains the sensor layer S, feature extractor, encoder, the associative 
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neural layer A, and the reaction neural layer R.. In the screw shape recognition 
task each neuron of the R-layer corresponds to one of the image classes. The 
sensor layer S corresponds to the initial image.  

The associative neural layer contains “binary” neurons that have outputs equal 
to either zero or one. The output values of associative neurons represent the result 
of encoder’s work. The neurons of the associative layer A are connected to the 
reaction layer R with trainable connections with weights wji. The excitations of the 
R-layer neurons are calculated in the following way: 

 Ei = ∑
=

n

j
jij wa

1
*        (9) 

where Ei is the excitation of the i-th neuron of the R-layer; aj is the excitation of 
the j-th neuron of A-layer; wji is the weight of the connection between the j-th 
neuron of the A-layer and the i-th neuron of the R-layer. 

The winner neuron that has maximal excitation is selected after the calculation 
of excitations.   

We use the following training procedure. Denote the winner neuron number as 
iw, and the number of neuron that corresponds to the correct class of the input 
image as ic. If iw = ic, then nothing is to be done. If iw ≠ ic, then the weights are to 
be updated in the following way: 

( ) ( )( )
( ) ( )( )jjiwji

jjicji

atwtwj

atwtwj

w

c

−=+∀

+=+∀

)(1

)(1
                 (10) 

if )0)1(( <+tw
wji  )1( +tw

wji = 0, 

where wji(t) and wji(t + 1) are the weight of the connection between the j-neuron 
of the A-layer and i-neuron of the R-layer before and after reinforcement 
correspondingly. 

2.2  Results 

To test the proposed subsystem in shape recognition of micromechanical 
workpieces we have produced 40 screws of 3mm diameter with the CNC-lathe 
Boxford. Ten screws were produced with correct position of the thread cutter. 
Thirty screws were produced with erroneous positions of the cutter. Ten of them 
had distance between the cutter and screw axis 0.1mm smaller than necessary. Ten 
screws were produced with the distance 0.1mm larger than necessary and the 
remaining ten with the distance 0.2mm larger than necessary. We made an image 
database of these screws using web camera Samsung mounted on an optical 
microscope. 
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Five randomly selected images from each group of screws were used for the 
neural classifier training and the other five were used for the neural classifier 
testing. 

The mean recognition rate of 92.5% was obtained for window wh ∗   width w 
= 25, height h = 25, 3 positive and 3 negative points for each specific point, 
threshold used in selection of specific points B = 60 and the total number of 
associative neurons N = 64000. 

3. Metal Surface Texture Recognition Task  

Texture recognition subsystems are widely used for industrial inspection in cases 
when the texture of a surface defines its quality and therefore affects the durability 
of the product, for example, in textile industry for inspection of fabric [15], in 
electronic industry for inspection of the surfaces of magnetic disks [16], etc. 
Texture recognition is also used when it is necessary to distinguish automatically 
different types of textures, for example, in decorative and construction industry for 
classification of polished granite and ceramic titles [17]. 

In this paper we propose a texture recognition subsystem based on the Limited 
Receptive Area (LIRA) [1] neural classifier for recognition of mechanically 
treated metal surfaces. The proposed texture recognition subsystem may be 
applied in systems that have to recognize position and orientation of complex 
work pieces in the task of assembly of micromechanical devices as well as in 
surface quality inspection systems. Four types of metal surfaces after mechanical 
treatment were used to test the texture recognition subsystem. 

Different lighting conditions and viewing angles affect the grayscale properties 
of an image due to such effects as shading, shadowing, local occlusions, etc. The 
real images of metal surfaces obtained in industrial applications have all these 
problems. Moreover, industrial environments pose some additional problems. For 
example, a metal surface can have dust on it.  

Texture recognition of metal surfaces provides an important tool for 
automation of micromechanical device assembly [2]. The assembly process 
requires recognition of the position and orientation of the components to be 
assembled [1]. It is useful to identify the surface texture of a component to 
recognize its position and orientation. For example, a shaft may have two polished 
cylinder surfaces for bearings, one of them milled with grooves for a dowel joint, 
and another surface turned with the lathe. It is easier to obtain the orientation of 
the shaft if both types of the surface textures can be recognized automatically. 

The only work on texture classification of mechanically treated metal surfaces 
known to us is [18]. The authors propose to use a vibration-induced tactile sensor 
that they call Dynamic Touch Sensor (DTS) in combination with one-layer 
Rosenblatt perceptron [19]. The DTS produces signals based on the vibration 
induced by a sensor needle sliding across a metal surface with fixed velocity and 
pressure. The motion path of the sensor is an arc of approximately 100 degrees. 



T. Baidyk, E. Kussul and O. Makeyev 

Such motion path permits to capture information about surface in two dimensions 
in one sweep; however, the system is very sensitive to the changes in texture 
position and orientation. Spectral energy of the sensor was used as an input to the 
neural classifier. Metal surfaces were characterized by two characteristics: surface 
type and surface roughness. Surface roughness is a measure of the average height 
of the surface irregularities given in microinches. Six types of surfaces and six 
values of surface roughness were used in testing. Obtained recognition rate varied 
from 74.16% in recognition of two types of metal surfaces with roughness of 8 
microinches to 100% in recognition of three types of metal surfaces with 
roughness of 250 microinches. In our experiments we achieved the recognition 
rate of 99.8% in recognition of four types of metal surfaces with roughness of the 
order of 1 microinch. In addition, our approach does not require a complex 
mechanical sensor and is robust to changes in texture position and orientation. 

3.1  Limited receptive area (LIRA) neural classifier  

The structure of the LIRA neural classifier is presented in Figure 9. LIRA 
neural classifier differs from the PCNC neural classifier in the coding procedure 
that is performed by the set of connections between the S-layer and A-layer and 
not by separate feature extractor and encoder.  

As in case of the PCNC neural classifier the S-layer of the LIRA neural 
classifier corresponds to the input image. The associative neural layer A and the 
reaction neural layer R are the same as in the PCNC neural classifier. The training 
rules for connections between the layers A and R and the recognition procedure 
are also the same.  

The coding procedure used in the LIRA neural classifier is the following. We 
connect an A-layer neuron to S-layer neurons through the neurons of the 
intermediate neural layer I (Figure 9). The input of each I-layer neuron is 
connected to one neuron of the S-layer and the output is connected to the input of 
one neuron of the A-layer. All the I-layer neurons connected to one A-layer neuron 
form the group of this A-layer neuron. There are two types of I-layer neurons: ON-
neurons and OFF-neurons. 

The output of an ON-neuron i is equal to 1 if its input value is larger than the 
threshold iθ  and is equal to 0 in the opposite case. The output of an OFF-neuron j 
is equal to 1 if its input value is smaller than the threshold jθ  and is equal to 0 in 
the opposite case. For example, in Figure 9 the group of eight I-layer neurons, four 
ON-neurons and four OFF-neurons, corresponds to one A-layer neuron. The 
thresholds iθ  and jθ  are selected randomly from the range [0, bmax], where bmax is 
maximal brightness of the image pixels. The i-th neuron of the A-layer is active (ai 
= 1) only if outputs of all the neurons of its I-layer group are equal to 1 and is non-
active (ai = 0) in the opposite case. ON- and OFF-neurons of the I-layer in the 
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structure of the LIRA neural classifier correspond to positive and negative points 
in the structure of the PCNC neural classifier. 

Figure 9 Structure of the Limited Receptive Area (LIRA) neural classifier 

The procedure for setting connections between the S-layer and a group of I-
layer neurons is the following. The input of each I-layer neuron of one A-layer 
neuron group is connected to one neuron of the S-layer randomly selected not 
from the entire S-layer, but from the window wh ∗  that is located in the S-layer 
(Figure 9). The distances dx and dy are random numbers selected from the ranges: 
dx from [0, wWS − ) and dy from [0, hH S − ), where SW  and SH  stand for width 
and height of the S-layer. The procedure of random selection of connections starts 
with the selection of the upper left corner of the window wh ∗   in which all 
connections that correspond to one associative neuron are located.  

The following formulas are used: 
 
dxi = randomi ( wWS − ),                  (11) 

dyi = randomi ( hHS − ), 

where i is the position of a neuron in associative layer A, randomi (z) is a 
random number that is uniformly distributed in the range [0, z). After that position 
of each connection within the window wh ∗  is defined by the pair of numbers:  
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xij = randomij (w),                  (12) 

yij = randomij (h), 

where j is the number of the connection with the S-layer. 
Absolute coordinates of a connection to the S-layer are defined as:  
 
Xij = xij + dxi,                   (13) 

Yij =yij + dyi. 

Detailed description of the LIRA neural classifier is presented in [1].  

3.2  Results 

To test our texture recognition subsystem we created our own image database of 
metal surface images. Four texture classes correspond to metal surfaces after 
milling, polishing with sandpaper, turning with lathe and polishing with file 
(Figure 10).  

 

 
Figure 10 Examples of metal surfaces after (columns): a) milling, b) polishing with sandpaper, c) 
turning with lathe, d) polishing with file 

Twenty grayscale images with resolution of 220x220 pixels were taken for 
each class. We randomly divided these 20 images into the training and test sets. 
Figure 10 illustrates the fact that different lighting conditions greatly affect the 
grayscale properties of images. The textures may also be arbitrarily oriented and 
not centered perfectly. Metal surfaces may have minor defects and be covered 
with dust. All these image properties correspond to the conditions of a real 
industrial environment and make the texture recognition task more complicated.  

Images that correspond to each of four classes were randomly divided in half 
into the training and test sets. The mean recognition rate of 99.8% was obtained 
for window wh ∗   width w = 10, height h = 10, three ON-neurons and five OFF-
neurons in the I-layer neuron group and the total number of associative neurons N 
= 512000. 
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4. Conclusion 

This paper continues the series of publications on automation of micro 
manufacturing and micro assembly processes [1], [2]. 

Neural network based computer vision system is proposed and tested in micro 
workpiece shape recognition and mechanically treated metal surface texture 
recognition. In the task of micro assembly such system can be used to recognize 
position and orientation of complex micro workpieces. In the task of micro 
manufacturing such systems can be used to evaluate the measurements of partially 
treated workpieces. Such evaluations can be used to make corrections to the 
manufacturing process. 

We performed experiments with the total number of associative neurons N 
ranging from 64000 to 512000. At first glance, in comparison with other neural 
classifiers, this number of associative neurons seems very large. Every neuron 
corresponds to the one feature set. If we have more neurons we can characterize 
the input image more precisely and obtain more useful information from every 
input image. This is an advantage of our approach. 

The other advantage is the following. The binary code that corresponds to the 
associative neurons activity is rare (contains small number of “ones” and large 
number of “zeros”). It permits us to create effective computer programs. Proposed 
classifiers were tested not only on the shape and texture recognition problems but 
also on the other problems. It gives good results in comparison with other 
classifiers in handwritten (MNIST database) and face recognition (ORL database) 
(result was one of the five best classifiers in the world) [12]-[14]. 

In this paper we propose to combine two subsystems based on neural classifiers 
into one computer vision system. This method to combine two classifiers gives us 
opportunity to resolve the recognition problem in manufacturing of micro 
workpieces more efficiently. Using in parallel manner two classifiers we can 
obtain the recognition results and analyze them in real time. 

Promising results were obtained during the off-line testing of both systems. 
We can use this system not only for production of micro workpieces but for 

agriculture tasks too. For example, for recognition of larvae it is important to 
recognize not only texture but the shape in parallel too. In agriculture the 
pesticides are used widely and sometimes without control to save the harvest. But 
it is dangerous for the health of people. So to reduce the pesticides application it is 
necessary to know exactly where larvaes are dangerous for the plants. For this 
purpose our system which combines the shape with texture recognition will be 
very useful. 
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